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PREFACE 

This monograph is intended mainly for  postgraduate students and 
beginning theoretical physicists. Its aim is to fi l l  the gap between standard 
text-books in quantum mechanics, on the one hand, and advanced-level 
books and periodical art icles in the theory of quantized fields, on the other. 

Traditional courses in quantum mechanics mostly deal with general 
principles and the theory of stationary states. Particular problems of 
scattering theory, unstable states, and multichannel processes  a r e  generally 
treated in greatly condensed form, so  that the student cannot acquire 
sufficient knowledge and techniques for independent work in this field. On 
the other hand, noninitiates embarking on a course in the theory of quantized 
fields and the closely related relativistic quantum mechanics have to fight 
their  way through a jungle of unfamiliar concepts associated with Lorentz 
invariance, causality, mass  and charge renormalization, and introduction 
of particle creation processes. 

and creation problems can be studied in the nonrelativistic approximation, 
which is much more meaningful to the beginner. 

and the -matrix, wi l l  learn how to work with a continuum of states, and 
familiarize himself with the theory of unstable particles. 

authors, 
when new channels are opened, the theory of unstable particles, the 
lifetime of intermediate states in scattering, a new formulation of the 
Lee model, nonrelativistic treatment of particle creation and nonconser- 
vation of parity. 

The choice of material was thus of necessity somewhat subjective. 
believe, however, that this shortcoming is at least  partly compensated 
by the efforts all authors generally take over the presentation of their  
own results. 
useful information among the stimulating and complex problems which lie 
hidden in the depths of the commonplace, nonrelativistic quantum mechanics 
and in the familiar Schroedinger equation. 

In writing this book, we  started with the premise that renormalization 

The reader  will  find here  a detailed treatment of the theory of scattering 

A substantial part  of the book is based on the original researches of the 
This includes the problem of scattering amplitude singularities 

We 

We hope that the reader  will find much interesting and 

A . I . B a z '  
Ya.  B .  Zel'dovich 
A .  M. Perelomov 

21 June 1966 
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Chapter 1 

THE DISCRETE SPECTRUM 

5 1. INTRODUCTION 

In this chapter we discuss some properties of the solutions of the 
Schroedinger equation which have a discrete spectrum of eigenvalues. 
These solutions, a s  we know, describe bound states. Three particular 
cases  will be considered: (a) states with low binding energy, (b) bound 
s ta tes  in a Coulomb field, (c)  the states of a three-dimensional harmonic 
oscillator. 

potential well is often encountered in applications; a s  an example, we can 
mention the ground state of a deuton. 
treated in some detail in 
case e + 0 ,  when the bound level has  just formed. In 
motion of a particle in two o r  several  potential wells and the important 
concept of a pseudopotential is introduced. 

standard textbook on quantum mechanics, and we wi l l  therefore concentrate 
only on the specific qualitative properties of these states.  
an example of degeneracy (generally called "accidental" degeneracy) of 
s ta tes  with different values of the angular momentum 1 .  Superpositions 
with various 1 values thus also constitute stationary states,  and an alternative 
classification of levels can be developed in this case. 

literally! 
of a special property of classical  mechanical systems, the existence of 
closed trajectories o r  paths. In quantum mechanics. degeneracy is a 
consequence of the separation of variables in several coordinate systems. 
A more fundamental reason, however, is the existence of a transformation 
group which leaves the Schroedinger equation invariant. All the other 
properties follow from the existence of this invariant group. These topics 
a re  discussed in 5 for a Coulomb potential and in § 6 for the harmonic 
oscillator. The so-called "coherent'l states are also discussed in 6. 
These states,  though not stationary, have a number of remarkable pro- 
perties,  e.g., they a r e  the closest (in a certain sense of this word) to the 
properties of a classical oscillator. 

of i t s  generalizations a r e  considered. 

A bound state with energy e small  compared to the depth U, of the 

The properties of these states a r e  

4 we consider the 
3, where particular s t ress  is placed on the 

Fairly detailed treatment of cases (b) and (c) can be found almost in any 

Here  we have 

The expression ''accidental" degeneracy is by no means to be understood 
The situation here  is by no means accidental. It is a consequence 

Finally, 5 7 gives a derivation of the so-called virial  theorem and some 



Ch. 1.  THE DISCRETE SPECTRUM 

A few words of guidance to the reader.  
The only purpose of § 1 and 2 is to introduce the notation for future 

use. A reader  who has recently taken a standard course in quantum 
mechanics i s  urged to stop here  and to skip the rest of S 1 and all  of § 2 .  
Otherwise he may become prejudiced and put the book aside before even 
reaching those topics which a re  still unfamiliar to him and a re  of the 
main interest. 

We will now briefly outline the fundamental postulates of quantum 
mechanics. 

The state of a system in a nonrelativistic quantum mechanics is 
completely described by a wave function Y, whose variation in time is 
determined by the Schroedinger equation (henceforth abbreviated to Sch. Eq.) 

where H i s  the system Hamiltonian. 

explicitly on time. 
probability density I Y (2 is constant in time. 
stationary state has the form 

We will mainly consider the case when the Hamiltonian does not depend 
In this case stationary states exists,  for which the 

The wave function of a 

whence it follows that 9 i s  an eigenfunction of the Hamiltonian, 

which describes a state with a certain rea l  energy E .  
For  the case of a single particle in a constant external field we have 

(1.2') 

The wave function 9 (r) should satisfy the usual conditions: the function 
and i ts  f i rs t  derivative a r e  single-valued* and continuous in the entire space. 

In the applications the potential U (r) is often spherically symmetric,  
i.e., it is a function of r only. In a spherically symmetric field the angular 
momentum operator L commutes with the Hamiltonian operator H (this 
corresponds to the conservation of angular momentum in classical  mechanics). 
Moreover, the operator H commutes with the inversion operator P (this 
property is without analog in classical  mechanics / 7 / ) .  

Since the operators H , L 2 , L , ,  and P commute, the eigenvalues of H may 
simultaneously be the eigenvalues of L', L , ,  and P .  
stationary state may have a definite orbital momentum I ,  where L' = I ( I  + l ) ,  
I is an integer, adefinitevalue of the momentum projection m on any axis  z, 

In other words, a 

The condition of  single-valuedness of the wave function is treated in detail by Pauli /1, 2/. 
condition leads, e. g.. to such nontrivial effects as magnetic flux quantization in a multiply connected 
superconductor /3. 41 and formation of quantized vortex "threads" in liquid helium /5. 6/. 

This 

2 



5 1. INTRODUCTION 

rn taking (21  + 1) values from - I to + I ,  and a definite parity P = + 1 o r  
P = - 1. In the one -particle problem the parity i s  uniquely fixed by the 
orbital momentum, P = (-l)*, i.e., the parity of the state i s  equal to the 
parity of the number 1 .  

It follows from the preceding that the Sch. Eq. has solutions of the form 

Here e and cp a r e  the polar and the azimuthal angle of the vector r ,  
y,, (0, cp) a r e  the spherical functions, and Rf ( r )  is a function which depends 
on r only. Insertion of (1.3) in (1.2) gives the following equation for R f :  

We introduce a new function 

~1 ( r )  = rRt ( r ) ,  

and the f i rs t  derivative drops out from the Sch. Eq. 

x; + [Y - (v (I) + =q] ra k = 0, 

(1.3') 

(1.5) 

Here  k=vmE/fi'and V = $U. We will re fe r  to V as the potential, 

The centrifugal potential v c a n  be incorporated in V ,  so that 

whenever this need not cause confusion. 

equation (1.5) takes the form 

+ (k' - V (r))xr = 0. (1.6) 

The properties of this equation are analyzed in any standard text on 
quantum mechanics (excellent treatment will  naturally be found in Landau 
and Lifehitz'a "Quantum Mechanics" IS/). 

As Cp ( r )  is bounded, we have the following boundary conditions for x* : 

%(r)-O for r+O,  

- %:) bounded for r # 0 and r + m. 
(1.7) 

Moreover, XI and xi should naturally be continuous. * 
We further choose the point of zero  energy in such a way that V ( r )  

vanishes for r + 00, 
Almost all the interactions between particles that we find in nature 

(except the Coulomb force and a few other interactions) a r e  described by 
rapidly decreasing potentials, i. e., potentials which fall off fas te r  than I / r  
for large r .  In many cases  these interactions a r e  actually ignorable for 
a l l  r greater  than some R .  so that we may take V ( r )  = 0 for  r > R .  We 

This is associated with the fact that equation (1.6) contains second derivatives: if either Xior xr is dis- 
continuous, the right-hand side of (1.6) will containa 6- or ab'-function. and no longer be equal to zero. 

3 



Ch. 1. THE DISCRETE SPECTRUM 

will thus speak of short-range potentials. Introduction of the cutoff radius 
R greatly simplifies the mathematics, and we s ta r t  the discussion with the 
particular case of a short -range potential. The centrifugal potential may 
be treated a s  a short-range potential and, so  as to avoid further complica- 
tions, we take the orbital momentum I equal to zero. 

We can now formulate our problem as follows: 
Find all the solutions x, ( r )  of the equation 

I x ; + ( k 2 - V ( r ) ) X k  = O  for r < R ,  
x; + k3xk = 0 for  r > R ,  

which satisfy conditions (1.7). 
The wave function in this case is 

(1.6') 

(1.3") 

For  r > R ,  as we see from the second equation in (1.6!), we have two 
solutions:? 

xi*) = &kr. (1.8) 

For r < R  we also have two solutions, but only one of them i s  acceptable, 
as  the other does not satisfy the boundary conditions at r = 0. 
for r -+ 0 is sought in the form of a power function P;  then by (1.6') 

Indeed, x.4 

u (U - 1) = - r' (k' -V (r)). 

If rsV ( r )  '-f 0, we find two values for u ,  namely 0 and 1. 
Sch. Eq. thus has two solutions 

For  r -+ 0 the 

b h ( r ) + a  for r - + O ,  ( r )  -+T for r + O ,  

where a and b a r e  constants. The solution 'pI must be rejected since 

A = - 4nW(r) 

so that for r = 0, & does not satisfy the Sch. Eq. *xc We a r e  left with the 
only solution VI, which corresponds to the power index u = 1. 

condition x ( r )  -+ 0 for r -+ 0. 
condition will be designated ~) (r) .  

The above treatment can be regarded as substantiating the boundary 
The solution which satisfies this boundary 

In the case of rapidly falling potentials we also have two solutions xi*)(r) which behave as e*''' for 
large r .  These solutions are often written in symbolic form as f ( r  k. r ) .  
in some detail by Jost /9/, and in this way they earned the name of Jost functions. 

a Coulomb tail,  U = ?, the asymptotic behavior of the functions xi ( r )  for r -. 00 is of the form 

Their properties were treated 
For potentials with 

' m a  
&(kr-fl In Skr)  , where q = -. 

R'k 

A solution of this kind is used in case of a singular potential. **  

4 



5 1. INTRODUCTION 

Now consider the regions of positive and negative energies. :% Positive 
energies correspond to real  values of k .  In this case, the two solutions 
(1.8) remain bounded for all  r > R, i. e., both solutions a r e  acceptable in 
this region. 

The most general solution for  r > R can be written in the form 

F o r  r = R this solution should match continuously the solution for the 
interior region: 

The matching can be ensured by an appropriate choice of A and S .  
approaching (1.10) a s  a system of simultaneous equations for  A and S ,  
we readily find 

Indeed, 

(1.11) 

Thus, for each positive energy value, the Sch. Eq. has one and only one 
solution. 
what follows. 

correspond to  imaginary k, i. e., k = i I k I .  ** 
not meet the second condition in (1.7). 
thus has  the form 

The physical meaning of this unique solution will be discussed in 

For  negative energies, the position is essentially different. Negative E 

The solution $) = dilr exponentially diverges for r +. 00 and thus does 
The most general solution for r > R 

(1.12) 

and the matching condition for the interior and the exterior functions is 

(1.13) 

This condition is in fact a transcendental equation for ) k l  and it is 
satisfied only by certain discrete imaginary values k = k,, (o r ,  correspond- 
ingly, discrete negative energies E,,). 

We see from (1.13) that this relation can be satisfied only if the loga- 
rithmic derivative of xf') is negative. 
what follows, is possible only i f  V ( r )  is negative in the main (i. e . ,  a 
repulsion potential) and has a large absolute value. In this case,  the 
functions of the discrete spectrum for r > R have the form 

This, a s  wi l l  become clear  from 

.. The case of positive energies is treated in more detail in Chapter 2. 
We follow the usual convention which places k in the upper halfplane. In principle. of course, nothing 
prevents us from considering the value of k in the lower halfplane. when #+)and X(-)are interchanged. 

5 



Ch. 1 .  THE DISCRETE SPECTRUM 

i. e., they decay exponentially for large r .  ':< For r < R these functions a r e  
also bounded, and the integral 

(1.14) 

converges. 
is equal to unity. 
represents a localized state of a particle in space. 
type correspond to the classical  case of bounded motion of a particle with 
negative energy, and the corresponding states a r e  the bound states of 
quantum mechanics. 

Thus, for positive energies, the Sch. Eq. has a unique solution (sat is-  
fying the boundary conditions) for each positive value of E (i. e., for kP > 0) 
and for any 1. 

only for some discrete values E = EnI.  
as follows: for positive energies,  the energy eigenvalues constitute a 
continuous spectrum, whereas for negative energies the spectrum i s  
discrete. 

In a discrete spectrum, each level in general has a definite value of I .  
Levels with equal 1 and different m a r e  degenerate, this being a consequence 
of the spherical symmetry of the potential. 

However, for 1 # 0, the solutions themselves a re  not spherically 
symmetric; their  angular dependence is determined by the angular part  
of the wave function, Ylm (0, cp). *': 

sponding to different m for one I does not a l ter  the situation: all  the degen- 
erate  levels and any l inear combination of these levels (which is also a 
solution) have the same parity P .  
particle this is the charge density) is not affected by space inversion, since 
this transformation changes 9 either to 9 o r  to -9. 

This proves that the charge density in a spherically symmetric potential 
always has a center of symmetry (although it need not be s p h e r i c a l l y  
symmetric), so that the electric dipole moment is always zero. 

The function xIn is generally normalized so  that this integral 

The solutions of this 
Since xkn falls off exponentially for r > R ,  the solution 

For  negative energies and fixed I ,  the equation is solvable (if  at  all) 
This result is generally formulated 

The solution moreover has a definite parity p .  The degeneracy cor re-  

The probability density 191' (for a charged 

In the special case of a Coulomb potential U = - y we encounter the 

so-called accidental degeneracy, i. e., levels with different I have exactly 
equal energies. The conclusion of zero dipole moment thus breaks down, 
and the particle may occupy a state with a finite dipole moment (this effect 
is treated separately in S 5). 

Note that for rapidly decreasing potentials the asymptotic behavior of xc ( r )  is described by e-'"'1r for 

r - OD, whereas for potentials with a Coulomb tail U ( r )  -z for r - OD 
r 

-'he-lknlr, )In- ma %&,,(r)-r .. I fi'lknl * 
Note that the sum 

a given I the particle may occur with the same probability in all states with different in, the Drobability 

I Y I m ( 8 ,  cp) I2 is independent of the angles 0 and tp. Hence it follows that if for 
m=-I 

density of finding the particle at a certain point in space is spherically symmetric. 
This explains, among other things. why the charge density in closed electron shells of an atom or in the 
closed shells of a nucleus is spherically symmetric. 

6 



9 2. QUALITATIVE FORM OF THE WAVE FUNCTION 

S 2 .  THE QUALITATIVE FORM OF THE WAVE FUNCTION 

Consider the qualitative form of the solutions ~ ( r )  of the Sch. Eq. We 

For  &* <V ( r )  the total energy is l e s s  than the potential energy and for 
will discuss separately the regions with k' < V (r) and &' > V ( r ) .  

P > V  (r )  the total energy is greater  than the potential energy. 
energy is thus respectively negative o r  positive. 

tion, * which is sufficiently faithful for purposes of qualitative treatment. 

The kinetic 

(r)  will be examined in the quasiclassical approxima- The behavior of 

We write (1.6) in the form 

where p is the classical momentum of the particle: 

p ( r )  = li p=iqT). 

The solution of (1.6") is sought in the form 

For  a (r)  we thus obtain an equation 

ia" - (a')* + P/h* = 0. 

If (as is usually assumed) fl< (a')', this equation yields 

(1.6") 

In quantum mechanics this approximation was first introduced by Wentzel /IO/. Kramers /ll/ ,  and 
Brillouin /12/, and i t  is correspondingly designated as the WKB approximation. The quasiclassical 
approximation received the main impetus in connection with the solution of quantum-mechanical 
problems. although Liouville /13/ and Rayleigh /14/ already approached individual problems by a 
similar technique (on this subject see /15/, where an extensive bibliography will be found: this book 
also gives solutions of various particular problems). 
that the quasiclassical approximation was developed in maximum detail for the one-dimensional Sch. Eq. 
with a time-independent potential. 
will be found in /IT/. 
new coordinates in which the variables in the Sch. Eq. can be separated, so that the problem is reduced to 
the one-dimensional case. In the three-dimensional case of free motion, say. the variables are separable 
in  ten coordinate systems besides the spherical system /18/. If one fails to find a coordinate system with 
separable variables, the derivation of the quasiclassical solution is a difficult problem. 
this kind for the two-dimensional case is examined in /19/. In /236/ it is also shown that in a number of 
cases quantum-mechanical approach sheds new light on the results of classical mechanics, 

A different approach is given in /16/. Notice 

An example of a quasiclassical solution for a time-dependent potential 
For many-dimensional problems a useful technique is generally to change over to 

An example of 

1 



Ch. 1. THE DISCRETE SPECTRUM 

whence 

x = exp {+ p (r’) drr}. 

The condition of applicability of this method is clearly the following: 

(2 .3)  

(2.4) 

h Here 3r is the de Broglie wavelength of the particle ( X ( r ) =  -). 
condition is satisfied only for sufficiently smooth potentials, far f rom the 
points where p ( r )  is zero  (the turning points). 
condition (2.4) holds true in a wide range of r values. 

independent solutions may be written in the form 

This P(d 

For rea l  potentials, 

In the classically accessible region k a > V ( r )  (i.e., E >  U ( r ) ) ,  the two 

i. e., both solutions a r e  oscillating functions. 
oscillations increases as the difference (ka - V ( r )  becomes greater. 

where E < U ( r ) .  
independent solutions a r e  the monotonic functions 

The frequency of these 

The case ka < V ( r )  corresponds to a classically inaccessible region, 
Here, p takes on imaginary values p = i l p l  and the two 

To summarize: 
In the classical region, the Sch. Eq. has  two oscillating solutions. The 

frequency of oscillations increases with increasing difference ka - V  ( r ) .  
In the nonclassical region, the Sch. Eq. also has  two solutions, but they 

a r e  both monotonic. One of these solutions decreases from the point where 
ks = V ( r )  and the other increases. 

8 3. LOW-ENERGY BOUND STATES 

Consider the Sch. Cq. with U ( r )  < 0. Note that in this case the funda- 
, 

mental distinction between classical and quantum mechanics can be formu- 
lated as follows. In classical mechanics any arbitrari ly small potential 
well is sufficient to bind the particle; the particle will r e s t  at the bottom 
of the well, which corresponds to a solution with E = U,i. < 0. 

In quantum mechanics, in the three-dimensional case, we are dealing 
with certain critical conditions for the existence of at least one discrete 
level; for such a leve l  to exist, the well should be sufficiently “wide and deep”. 
This result is clearly traceable to the uncertainty principle: a particle is 
bound by the potential U ( r )  i f  it remains a certain proportion of the time 
in a region where the potential is negative, but not zero. 
oftheparticle in space, however, implies an increase in i ts  mean momentum 

1 

The localization 
I 

8 



4 3. LOW-ENERGY BOUND STATES 

and mean kinetic energy. Therefore in a shallow and narrow well it is 
impossible to construct a solution with negative total energy, and not a 
single discrete level can be accommodated. * 

Of considerable importance are the conditions which prevail when a 
discrete level has  just formed, i. e., when the depth and the width of the 
well are close to their critical values. A characteristic feature of the 
solution in this case  is that the particle remains a very short time in the 
well (this time goes to zero as the well approaches i t s  cri t ical  dimensions), 
and the properties of the solution a r e  not oversensitive to the form of U ( r ) .  
A situation of this kind is encountered, say, in the theory of the deuton, 
which is a bound proton-neutron state 1211. 

Let u s  first  derive the condition for the existence of a discrete level 
in a "rectangular wel l" ,  i.e., in a potential of the form 

u = - - ( l -  o - - - V v o  for  r < R ,  
2rn 

u=o  for r > R. 
(3.1) 

The Schroedinger equation ( 1.6) takes the form 

for r > R. (3.2) x" + (- x' + VO) x = 0 
x' - xsx = 0 

Here we use the notation x = - ik .  
states, whose energy i s  negative, k is a pure imaginary number ( k  = i/ k l ) ,  
so that x is real, x =  Ikl. 

Since we a r e  concerned with bound 

The solutions of (3.2) satisfying the boundary conditions are 

(3.3) 1 X=Bs inKr ,  K = v n  f o r r , < R  
x = AI?-" for r > R .  

Equating these functions and their derivatives at the matching point r = R ,  
we find 

(3.4) 

We can now determine the potential - U = U,required for the formation of 
a bound state. 
Therefore putting x = 0 in (3.4) we obtain 

The energy of a state which has just formed is clearly zero. 

The dependence U1- R-= is quite general, and is not specific of a 
rectangular wel l  only. Indeed, suppose that for some U ( r )  the Sch. Eq. 
has a solution Ip ( r )  with a given energy E .  
= a ' 9  (ur). 
remains normalized; as the Sch. Eq, is linear, t h i s  factor cancels out. 

Try a substitution 9 ( r )  -+ql ( r )  = 
The factor a'/* before 9 is s o  chosen that the wave function 

* This argument is not quite conclusive, as in principle i t  is applicable also to the one-dimensional and 
two-dimensional case, when a discrete level exists irrespective of the well depth and width. 
that any shallow well will acquire a discrete level as soon as a n  arbitrarily weak magnetic field is turned 
on /20/. 

Also note 
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Ch. 1. THE DISCRETE SPECTRUM 

To identically satisfy the Sch. Eq. with the new 9,  we should make the 
substitution E --+ El =aa€ and U ( r )  + a ' U ( a r ) ,  since 

Thus, a contraction transformation ( a > 1, the characterist ic length 
is a-l) is accompanied by an increase in all energies by a factor NU', i. e., 
in inverse proportion to  the square of the l inear dimensions. 
reason for this is that the momentum is inversely proportional to wave- 
length, so that the kinetic energy is inversely proportional to the wavelength 
squared. 

for the particle to be found inside the well ( r < R )  o r  outside the well ( r  > R ) ,  
respectively. 

w 2 - i x a d r ,  and their  sum is wl +w, = 1 by normalization coAdition. 

we find 

The physical 

Consider the case Ix*l<V,. We will calculate the probabilities W I  and cu, 

R 
These probabilities a r e  proportional to wl- 5 xsdr  and 

Ignoring xs compared to V ,  in the radicand in (3 .3 )  and taking mol? = 5, 

(3.5) 

Thus for E + O  the particle remains most of the time outside the well. 

The mean potential energy is 

The expectation value of the kinetic energy is 

Since (a (  
difference between two large numbers. In order  to find E as a sum u + T ,  
we should compute the higher t e rms  in the expansion of in powers 
of xs/V,, which is left to  the reader .  * 

Let us now 
gradually make the potential well "deeper1' and see how the binding energy 
changes. 

(El, T > [El, the binding energy e = -E =- (D + 7) is a small  

and 

For a given R there is a certain cri t ical  U1 such that E = 0. 

Using the perturbation theory, we find 

d E  = w1 dU = 2 G d U .  

It is readily seen that in the one-dimensional case, for 

we haveT= 1 ?!. 101, i. e., 

In the two-dimensional case a bound level also always exists, but the binding energy cannot be found 
in this way, since then T= 1 DI and E = T -  ID I is an exponentially small number. 

-sg 101, so that there is always a level with energy E sn = - I?i_4Vo*R'. 
i 2  v o  2m 
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§ 3. LOW-ENERGY BOUND STATES 

The binding energy a s  a function of well depth thus has a characterist ic 
singularity: a t  the point where the level forms, it is tangent to the abscissa 

axis  (Figure 1). 
independent of the particular form of the 
potential U ( r ) .  

Let us  now consider a particle which 
occupies a bound level with E = - IEoI o r  

This is a general conclusion 

I 
FIGURE 

, / ~ scattered particles with energy of the order  

l L / 1  of IEoI. 
compared to IEol .  
EdU -P 0 the theory is  essentially simplified. 
Here for a fixed Eo we make 1 U I go to infinity; 

The particular situation which develops during the formation of a level 

The well depth is assumed to be large 
In the limiting case a s  4 

1. 

moreover R -+ 0 in such a way that IUIR* + const. 

thus sett les the question of the properties of the solution for a singular 
potential with I U I -+ oo and R -+ 0 for fixed binding energy. 

continuous for  r = R:  
The solutions of the Sch. Eq. and their  derivatives should remain 

These two conditions can be rewritten in the form 

The f i rs t  condition is trivial ,  since the equation is l inear and any %which 
does not meet the first  condition can always be multiplied by a constant C 

such that C% = %Ir-,+ This will not affect 91 !!k dr , however, so that the 

second condition is not trivial. 

4 b - 7  , we find for  r = R (and in the limit as R + 0, for  r = 0) 

By matching the solution inside the well with the solution outside the well 
e- 

(3.7) 

It i s  significant that in the limit a s  R --* 0 interchanging Eo and E (which 
involves a small  change in energy compared t o  U,,) does not affect the wave 
function r < R ,  and thus does not change the boundary condition (3.7) either. 

A deep potential well is thus described by the value of d% a t  the well 

Consider as an example the solution of the Sch. Eq. for  a continuous 
boundary, this being a general property of the Sch. Eq. 

spectrum of positive energies (in more detail this case is treated in 
Chapter 2).  In this case the continuum functions are  changed by the 
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potential well and the particle is scattered. Outside the well the equation 
has the form 

x'' + k2x = 0. 

The general  solution is thus 

x (r) = A sin (kr  + 6 (k ) ) .  (3.8) 

In the absence of a potential well, we should have x (0) = 0, so that 6 = 0.  
For a particle impinging on a potential well, we match the solution (3.8) 

with the solution inside the well, which gives 

(3.9) 

The linearity of the Sch. Eq. i s  responsible, to use mathematical 
terminology, for the group property of the solutions: any solution can be 
multiplied by a constant and still remain a solution. Using this group 
property, we can lower the order  of the Sch. Eq. and switch over to a 
f i rs t -order  nonlinear equation. 

d In x a new variable z = - 

Note that 

This equation is conveniently written using 

dr ' 

so that the Sch. Eq. is reduced to the form 

(3.10) 

The characterist ic property of the regular solution with x (0) = 0, in which 

we a re  interested, is that for  r + 0, x (r) +Grand z -+ T .  This transformation 

to a f i rs t -order  equation is a general property of the Sch. Eq. :: 
The distinctive feature of the problem with a singular potential, i. e., 

a deep and narrow well, i s  that ka can be dropped inside the well, so that 
we have to solve the equation 

1 

-+za-vI/(r)=O dz 
dr (3.11) 

and find z at the well boundary (i. e., z ( R ) ) ,  as it determines the solution 
outside the potential well. 
equation does not affect the result  for z (R). 

if  this deepening and narrowing of the potential well, i. e., the transformation 

For V +. 00, R + 0 the inclusion of k1 in the 

As  we have already noted, V ( r )  should meet a certain precise condition 

In some cases this transformation is quite helpful. In particular, it sometimes facilitates the determinarlon 
of scattering phases from the given potential U ( r )  /22/. 
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§ 4. FIELD OF SEVERAL SINGULAR POTENTIALS 

V -VI ( r )  = u*V (ur), is to leave the binding energy - E (and thus z (R)) finite. 
This condition is not written in explicit form, and it is only formulated 
a s  a constraint on the solutions of the Sch. Eq. If this condition is not 
satisfied, then 1 E l - t  00 and z (R)  -+ 00 for  u-t 00. 

The parameter  a = -LIrER is called the scattering length. i: 

We have seen that E < 0 whenever a bound state exists. The scattering 
If the scattering length i s  negative, there length in this case is positive. 

i s  no bound state.  
The entire theory of this section i s  not restricted to the lowermost 

energy level: in principle we can think of a case when the lowermost level 
(the wave function 1,) l ies  very deep, 
E - U, and it is the second level xa which 
is a "resonance" level close to the f r ee  
states. The corresponding wave functions 
a r e  shown in Figure 2 .  

In principle, resonances a re  a lso 
possible in a state with 1 # O .  In this case 
there is invariably a lower-lying level 
with 1 = 0. Note that for 1 # 0 the depend- 
ence of the scattering phase on E and the 
dependence of E on (I U 1 - U,) differs from 
that described by the above formulas 

xId(z- 
jR  

FIGURE 2. 

for 1 = 0. 

with adequate accuracy by the limiting potential U -+ 00, R -  0 a r e  encountered 
in nuclear physics. The interaction between a neutron and a proton with 
1 = 0 produces a bound state (a  deuton nucleus) with binding energyof 2.2 M e V  
i f  the spins of the particles a r e  parallel. This state can be described by 
a potential well whose depth I!/, is about 36 M e V  and radius R = 2 
The second case of proton-neutron interaction with antiparallel spins is 
characterized by z >  0. No bound state forms in this case. 

n v  

ing well parameters  a re  U, r 18 MeV, R = 2.5 .10-13cm. 
of singular potential is perfectly applicable to scattering of neutrons with 
energies of up to  1 MeV by protons. 

We will not discuss this problem, however. 
The two principal cases  when the true potential U ( r )  can be replaced 

cm. 

The parameter 

- 2m , called the virtual level energy, is equal to  0.07MeV. The correspond- 

Thus, the theory 

§ 4. 
SINGULAR POTENTIALS 

A PARTICLE IN THE FIELD OF SEVERAL 

In the preceding section we saw that the problem of motion of a particle 
in the field of a singular potential can be formulated in the language of 
boundary conditions imposed on the wave function at r = 0. 
solution of the Sch. Eq. for  small  r and 1 = 0 has the well-known form 

The general  

This concept was fint introduced by Fermi /23/. 

13 



Ch. 1. THE DISCRETE SPECTRUM 

If we a r e  dealing with smooth potentials, the constant p is taken equal to 
zero. 
condition establishes a certain relation between the constants a and p: 

This i s  not so, however, for  a singular potential, and the boundary 

(4.2) 

where z is a characterist ic of the potential. 

potentials. 

situated a t  the points rl and r,. 

is sought in the form 

This approach is highly convenient for  solving problems with several  

Consider, for example, the case of two potential wells with given z ,  

For a given energy E = - 'I".(', the solution 
2m 

Near f = rl, putting rl2 = I rl - r, I and se r i e s  expanding the first  exponential, 
we have 

Hence, 

(4.4) 

(4.5) 

This transcendental equation for  x enables u s  to find the binding energy of 
a particle in the field of two potential wells. In particular, we see that for 
z >  0 (i. e., a well which alone cannot bind the particle) two sufficiently 

1 close wells wil l  produce a bound state; the cri t ical  condition i s  rIs = I 

for x =  0. 

in space with a density of p wells per  cubic centimeter. 
Now consider the case of an i n  f i n i t e n u  m b e r of wells distributed 

By analogy with the case of two wells, we have 

The parameter x is found from the condition 

(4.3') 

(4.5') 

The sum is replaced by an integral assuming that is much greater  than 

the distance to the nearest  neighbor, 4 > p-'k 

dr = - x + 4np--. 1 
x' (4.6) 

A similar wave function was used in the problem of pion scattering by a deuton in the momentum 
approximation /24/. and in collision problems involving negative ions and neutral atoms / 2 5 ,  26/. 
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9 4. FIELD OF SEVERAL SINGULAR POTENTIALS 

This equation, unlike the preceding case of two wells, always has a 
solution with x> 0, for any p and Z .  

to rbrplx.. This gives 
Since 11% > p+ we can drop x compared 

x'=4xpI; i E = - 4 n p L E  L 2m ' (4.7) 

1 and the constraint l /%> p-"* now takes the form I-gp-Ila. 

ment corresponds to the case z > 0, when a single well does not have a 
bound level. 

We see that a system of wells distributed with a given density gives 
r i se  to a negative energy state. 
were replaced by a slowly varying potential "v (r) (whose variation is slow 
compared to the distance between the wells) satisfying the condition 

The entire t reat-  

This energy is the same a s  if  each well 

Then the potential at any point, 

entire volume, being equal to 

- ri), is constant throughout the 

This is also the energy of a particle at res t  in the field of this potential. 

and the small  potential (to which the perturbation theory is applicable) 
whose action on a particle is equivalent to that of a singular well. 

averaging of the potential U (r): U,, = p 5 U d f .  

attractive potential (V< O), the pseudopotential is greater than the average 
potential, f 01 > I U., 1, this being due to the increased probability of finding 
the particle in the region where the potential is different f rom zero. 

This result  emerges  with particular clarity when U- Ft for R 0. 

Then U,, = const pR -+ 0, whereas the pseudopotential 0 does not approach 
zero. In the case of a repulsive potential (U > a), I Dl < lV.,l and in the limit 

U-,oo ,  R + O , - + ,  ( 1 - a n m t . R - + O ,  whereas for Chamat.& and N > 3  
the limiting value is 

This is the method for finding the slowly varying p s e u d o p o t e n  t i a 1 * 

We should s t r e s s  that the pseudopotential 0 cannot be found by simple 

Thus, in the case of an 
V+ 

R 

u,, =COn3t.pF-,00. i 

Using the concept of a pseudopotential, we can easily find the refractive 
index of matter. 

This concept was fimt introduced by Fermi F3/ .  The applicability of the perturbation theory is considered 
in detail in Bethe's paper f27/ (p. 123) and in DE/. 
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k' Let a particle with small  but finite energy E = %be incident from vacuum 

into a medium characterized by pseudopotential v' (see (4.8)). 
kinetic energy T of the particle inside the medium we have 

For the 

fr" 
2m , ( I  + 4 3  

k* 
(IRn)' 

2m ' 

Hence an expression for the refractive index of the material: 

(4.9) 

Note that a well without a bound level ( U >  0, say) nevertheless pro-  
duces effective attraction; the corresponding pseudopotential is always 
negative, and the parameter z for U ~ C O  and fixed R monotonically 

i approaches - R' 
Conversely, a well in which a bound level has  just formed may capture 

a particle on that level. The other free particles,  however, see this well 
a s  a center of repulsion and i t s  pseudopotential is positive. This is the 
reason, for example, for the reflection of low-energy neutrons off the 
surface of graphite and beryllium at any incidence angle, up to the case 
of normal incidence. This effect opens an interesting possibility for cold 
neutron storage in a graphite container 1291. 

parameter z drops to minus infinity, then increases to plus infinity and 
eventually decreases  reaching zero  at  the time when the second level is 
formed. This indicates that a change in well depth causes oscillation of 
the pseudopotential. 

A s  the well is made deeper,  while i t s  radius remains constant, the 

I 5.  COULOMB POTENTIAL 

The theory of a particle in a Coulomb field was developed in great 
The monograph by Bethe and detail and can be found in any textbook. 

Salpeter 1301.  for example, contains a wealth of information on the 
subject and a summary of published resul ts  up to 1959 inclusive. 

In this section our aim is therefore not to present new results,  but 
to examine the well-known facts from a different angle. 

In the nonrelativistic approximation, when the relativistic corrections,  
the electron spin, and the higher approximations of quantum electro- 
dynamics a r e  ignored, the Hamiltonian of an electron in the Coulomb field 
of a nucleus of charge Ze is 

and the energy levels a r e  given by 

(5.1) 
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5 5. COULOMB POTENTIAL 

Here 

We know from the elementary theory that the levels of a hydrogen atom 
a r e  degenerate: for a given n, there a r e  levels with I ranging from 0 to  
n - 1; all  these levels with different 1 have the same energy. 
as "accidental" degeneracy, i: a s  no such degeneracy is expected in the 
general theory of an arbi t rary spherically-symmetric potential. 

What new effects a r e  associated with the accidental degeneracy? One 
of the best known is the l inear Stark effect in the hydrogen atom: the excited 
hydrogen atoms, i. e., atoms with n > 1, may have different energies in 
the electric field. 
being proportional to the electric field 8: 

This is known 

These atoms form a multiplet, the energy splitting 

(5 .3 )  

where k goes from - (n - 1) to (n - 1). 
n = 2 is split into three sublevels. 

atoms have an electric dipole moment: the energy of a neutral  body with 
dipole moment d in an electric field 8 is - dEp. 

In 
moment. 
potential have no dipole moment. 
eracy we have, say,  E,, = E,, = E, (the f i rs t  index is the principal quantum 
number, the second index is I ) .  
with different 1 and the same n is also a solution corresponding to a given E,. 

Thus, for instance, the level with 

The l inear dependence of E on 18 I signifies that the excited hydrogen 

1 we have demonstrated in a general way that an atom has no dipole 

But here  on account of accidental degen- 
What is happening here  then? States with a definite I in a Coulomb 

Therefore a superposition of solutions 

Consider the s ta tes  

(5 .4)  

These a r e  s ta tes  with energy E$ and dipole moments of +3ea and -3ea, 
respectively, pointing along the z axis. Finally, %.l,l and %.l.-l, as well as 
any superposition (linear combination) of these functions, a r e  two s ta tes  
with energy E, and zero dipole moment. 

without any electr ic  field two states with a dipole moment and two states 
without a dipole moment, al l  having the same energy. 

Thus, from the four degenerate states (one 2s and three 2 P )  we may form 

In an electric field the level with n = 2 is split into three levels. 
States with dipole moment do not have a definite parity, since they a r e  

formed as superpositions of states of opposite parity. 

As distinct from the degeneracy of levels with fixed 1 and various m ,  which is a consequence of the 
invariance of the Sch. Eq. under three-dimensional rotations. 
and some consequences of the "accidental" degeneracy are given below. 
These states arise when the Sch. Eq. is solved for a Coulomb potential in parabolic coordinates. 
Note that the variables are separable in this case in the elliptic coordinates too. This possibility of 
the separation of variables in different coordinate systems is one of the consequences of accidental 
degeneracy; different coordinate systems correspond to different complete sets of commuting operators 
(commuting with the Hamiltonian and between themselves). 

Group-theoretical derivation of (5.2) 

* *  
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In a non-Coulombic potential, we may take a superposition of two 
solutions with different 1. but these solutions will a lso have different 
energies. 
subscript corresponds to I )  

The time-dependent wave function therefore has  the form (the 

(5.5) 

For  El# E, the dipole moment calculated using this wave function 
2nl oscillates with a period of 

identically zero. 
Classical-mechanical arguments readily show why the Coulomb potential 

gives r i se  to a dipole moment. 
Classical  orbits in a Coulomb potential a r e  Keplerian ellipses, with 

the source charge in one of the foci of the ellipse (Figure 3).  
"aphelion" (the farthest  point) the electron moves more slowly than at  the 
"perihelion" (the point closest to the proton). 
of the electron, the hydrogen atom on the average has  a dipole moment; 
the time-averaged position of the electron r corresponds to a point on the 
semimajor axis lying midway between the center and the second focus 
of the ellipse. 

and the time-average dipole moment is 

At the 

In case of Keplerian motion 

FIGURE 3. FIGURE 4. 

Now consider the case of a non-Coulombic potential; for example, the 
potential set up by the sodium nucleus and the 10  inner electrons is not a 
Coulomb potential, so that the eleventh outermost valent electron in a 
sodium atom moves in a non-Coulombic potential. In a non-Coulombic 
field the classical  orbit is not closed* (Figure 4), i. e . ,  the major axis  of 
the ellipse turns (precesses) around the focus. This classical  picture is 
fully consistent with the quantum result: the dipole moment oscillates and 
averages out to zero  in time. 

The four wave functions with n = 2 can be chosen in a different way, 
so that each of the four orthogonal states has dipole moment of the same 
magnitude, the directions of the dipole moment vector corresponding to 
the four corners  of a tetrahedron with the nucleus a t  its center. 

' Note that according to Bertrand's theorem /31/, the Coulomb potential and the potential of a harmonic 
oscillator are the only spherical-symmetric potentials in the three-dimensional case which admit of 
closed orbits. (In this connection see the interesting remarks of Ehrenfest /32/ on the uniqueness of the 
three-dimensional case compared to other cases.) 
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Let li ( i  = 1, 2, 3, 4) be the four three-dimensional unit vectors pointing 
4 t f rom the center of the tetrahedron to i ts  apexes: l ~ l f  = +ill- 8. We also 

introduce the following notation: 

It is now readily seen that the four functions 

have the desired properties. 

mation to the chemical bond of a carbon atom with other atoms. 
atom has precisely four electrons with n = 2. 
chemistry that the covalent bonds of carbon a r e  indeed directed to the four 
corners  of a tetrahedron 1331. 

We can now proceed with the derivation of (5.2). Our method will  be 
somewhat unusual, as we will  derive En by an entirely algebraic technique. * 
Note that Pauli / 34 I derived this formula roughly in the same way long 
before the formulation of the Sch. Eq. 

F i r s t  note that (as  we know from classical mechanics) the angular 
momentum vector is not the only conserved vector in a Coulomb field: 
the so-called Runge-Lenz vector 135, 361, which is directed along the 
semimajor axis of the ellipse, is also conserved:** 

These wave functions (the so-called u -electrons) a r e  the zeroth approxi- 
The carbon 

We know from organic 

It is readily seen that the operator 

(5.7) 

commutes with the Hamiltonian [a, HI = 0, and therefore the operator 1 
is a quantum-mechanical generalization of the vector A .  The commutation 
relations for the operators L, and Ai have the form 

(5.9) 

Let us  now consider states with f i x  e d negative energy, Fo r  these 
states we may treat  H = E as a constant negative number, replacing AI 
by the operators NI = (-2H)-'I*Ai. Relations (5.9) take the form of commutation 

If the reader finds the following argument too abstruse. he can safely omit the remainder of this 
section. 
In a historical aside we should mention that this integral of motion was already known to Laplace /37/. * *  
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relations for the generators of the rotation group of the four-dimensional 
Euclidean space, 0 (4) / 38 / ::: 

I [Li,  L j ]  = i S i / k L k ,  [Li, Nil = i E i j k N k ,  

[Ni, Nil = i E i j k L k .  

Note the following important identities satisfied by LI  and NI: 

At this stage we introduce two new vector operators 

( 5 . 9 ’ )  

(5.10) 

(5.11) 

commuting like the angular momentum operator for the three -dimensional 
rotation group 0 (3); J(1) and J2) also commute between themselves: 

(5.9”) 

Hence it follows that the eigenvalues of (./(1,2))2 a re  jl,a (jl.s f l ) ,  and by (5.1 0) 

Comparison of (5.12) and (5.2) shows that 

(5.12) 

(5.12’) 

It also follows from the preceding that the degree of degeneracy i s  

We know that the transformation properties of functions under the 
(2jl + 1) (21, + 1)= (2j  + 1)s = ne. 

group 0 (4 )  - the four-dimensional rotation group - a r e  completely 
determined by the numbers jl and j a ,  i. e., the eigenvalues of the operators 
(J(1))’ and (J(2))a (or the operators L a f N a  and L N ) .  
say that the functions a r e  transformed according to the representation 
D (jl, 1,) of the group 0 (4) .  In our case,  the wave functions for a fixed 
E = E,, transform according to the representation D ( ! ! ,  %’). 

A s  we have noted before, in the degenerate case for a fixed energy 
E < 0 we may consider different systems of wave functions. 
in the usual case of the separation of variables in spherical coordinates, 
the corresponding wave functions 
operators H, La and L,. 
of the operators H, J!”, and JL”. 
of variables in parabolic coordinates 1401; here kl and k, a r e  related by the 

If jl and j a  a r e  known, we 

For  example, 

(t) a r e  the eigenfunctions of the 
We may consider, however, the eigenfunctions 

These functions $nk,k, ar i se  in the separation 

In the n-dimensional case, relations of the form (5.9) and (5.9‘) take the form of commutation relations 
for the generators of the group 0 ( n  + 1) /39/. 
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§ 5. COULOXlB POTENTIAL 

following equalities to the numbers n, and n2, which are  generally used with 
parabolic coordinates: 

1 1 kl = (m + nl - ne), kz = z (m - nl + ne), 

- k k k l ,  b k k ,  k =  v; n l + n s + I m l + l  =n. 

Since L = J( l )  + JZ) the transition from one method of description to another 
reduces to the famous problem of composition of two angular momenta j l  = 1, = 

= - -  - k .  Adding up these momenta we find that for a given n ,  1 takes on 

by 1411 

n- - l  

values from 0 to n-1. It is also easily seen that $n/m and $nk,k, a r e  related 

(5.13) 

where the numbers (j lml,  je&I jm) a r e  the Clebsch --Cordan coefficients. 

of four-dimensional rotations, and that this invariance completely accounts 
for  degeneracy of energy levels. 
degeneracy is not quite to the point. 

We have so far concentrated on a somewhat formalistic treatment and 
made no attempt to determine the explicit form of the wave functions. 

Let us now transform the Sch. Eq. following Fock 142, 431 to a form 
invariant under 0 (4) .  The Sch. Eq. in the momentum representation 
has  the form 

We have thus established that the Sch. Eq. is invariant under the group 

Therefore, the term "accidental" 

(5.14) 

We will consider the momentum space a s  a stereographic projection of 
a four-dimensional space, introducing new variables 

Changing over  to a new wave function 

9 (E) = (P' + P o w  (PI* 

we obtain the equation 

5.16) 

5.17) 

Fock has noted 142, 431 that this is actually an equation for four-dimensional 
spherical functions Ynrm (E), and the corresponding values of the parameter  q 
a r e  thus equal to n. :% 

It is clear that in case of attraction (q >O), E"= - er'm, and in case of repulsion (q < 0) no bound states 

are observed. 
2n' 

21 



Ch. 1. THE DISCRETE SPECTRUM 

We have thus obtained the following result: the wave functions of the 
Coulomb problem have the form 

q r m  (P) = Cnrm (pa + P o * ) * ~ n ~ m  (E) (5.18) 

(here  Cnlm is  a normalization constant). 

to be proportional to four -dimensional spherical functions. 
of these and general n-dimensional spherical functions is treated in con- 
siderable detail in 144, 451. where the explicit form of these functions can 
be found. 

Note that by using wave functions in the form (5.18) we can derive 
explicit expressions for certain sums encountered in the theory of the 
atom 142, 431 and find an elegant representation of the Coulomb Green's 
function for E < 0 1461. 

more complicated properties,  
discrete spectrum is that the four-dimensional sphere of our analysis is 
replaced by a four -dimensional two-sheet hyperboloid and the finite- 
dimensional representations of the 0 (4)  group a r e  replaced by infinite- 
dimensional unitary representations of the Lorentz group. Detailed 
treatment of the continuous spectrum can be found in 1471. Note that 
similar symmetries a r e  a lso observed for a Coulomb potential in n -  
dimensional space 147. 481. 

It is significant that the wave functions of the discrete spectrum turned 
The theory 

The functions of the continuous spectrum have similar,  though somewhat 
The main distinction from the case of a 

S 6. THREE-DIMENSIONAL OSCILLATOR 

Consider the potential 
U = ' 2 - ,  kf= (6.1) 

with k > 0. 
Therefore to rea l  physical systems it is applicable only to some approxi- 
mation, a s  long a s  r is not excessively large; at  great distances, the 
rea l  potential inevitably deviates from (6.1). 

shell model of the nucleus 1491 and in the collective model 150, 51 /. 

one-dimensional case too, is that i t s  levels a r e  equidistant. 
to an immediate analogy between the excited state of a single oscillator 

with energy (n + f )  lio and the state of a system comprising n identical 

particles each of energy lo. 
what is known a s  the "method of second quantization", which is concerned 
with processes involving a variable number of particles. 
various properties of electromagnetic radiation a r e  found to coincide with 
the properties of an ensemble of quantum-mechanical oscillators. 

Further,  the radiation from a large system of two-level particles (this 
is the model generally used in the theory of lasers )  can be reduced to the 

This potential does not satisfy the condition U ( w )  = 0. 

This potential is nevertheless used in nuclear physics, e. g., in the 

An important property of this potential, which remains valid in the 
This leads 

This analogy is the underlying basis of 

In particular, 
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9 6. THREE-DIMENSIONAL OSCILLATOR 

radiation from one oscillator in many-dimensional space. 
levels of this oscillator a r e  degenerate, like the levels in a Coulomb 
potential. 
three -dimensional oscillator. 

The energy 

We will consider the case of "accidental" degeneracy f o r  a 

The solution of the Sch. Eq. with potential (6.1) is sought in the form 

Each of these functions satisfies the one-dimensional Sch. Eq. with a 
harmonic oscillator potential. 
corresponding to motion along the three coordinate axes. 

The total energy is the sum of the energies 

The energy levels of a three -dimensional spherically symmetric 
oscillator a r e  thus degenerate. The general expression for the energy is 

3 E, = ( n  + T) Ao, 

where n is an integer. 
linearly independent solutions with the same energy, is equal to the number 
of ways in which n can be split into three non-negative integers. 
struct an equilateral triangle with n units per side and draw a grid which 
divides the triangle into small triangles of unit side. 
grid point from the sides of the large triangle is an integral number of 
heights of the unit triangles. The 
degree of degeneracy N is thus equal to the total number of grid points, 
including those along the three sides of the large triangle (for these, one 
of the three quantum numbers is zero) and at  its vertices (where two quantum 
numbers a r e  zero and the third is n ) .  The total number of grid points is 
readily seen to be equal to 

The degree of degeneracy, Le.,  the number of 

We con- 

The distance of each 

The sum of these three integers is n. 

According to a general theorem, the levels in a spherically symmetric 
kr' potential U = 

i ts  projection rn. 
A state defined in the form (6 .2)  by three quantum numbers nl, n,, n, in 

general does not have definite 1 and rn .  A useful exercise is therefore to 
observe how linear combinations of states of the form (6.2) give s ta tes  with 
definite I and rn. 

For  n = 0 there is but one state and it is readily seen to correspond to 
1 = 0. 

For n = 1 there a r e  three states. 
combinations give precisely three states with 1 = 1. 

is a state with 1 = 1, rn = 0; T2 hp1 (nl)(po (xp) * iq0 (xl) ql (xp)l cp0 (x,) is a state 

with 1 = 1, rn = fl. 

can be classified according to  the orbital momentum 1 and 

It is readily verified that their linear 
Here qa (xJ(P0 (x,)ql (xI)  

1 
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Ch. 1. THE DISCRETE SPECTRUM 

For n = 2 there a r e  six states.  

In the general case,  to each n corresponds a range of states with 

They can be combined to form one state 
with I = 0 and five states with 1 = 2,  m taking all  values f rom 2 to -2. 

I = n, I = n -2 ,  I = n - 4 , .  . . up to I = 1 o r  1 = 0. depending on the parity 
of n. 

different I ,  say 1 = 2 and I = 0, a r e  thus degenerate. 

the Sch. Eq. is invariant under a wider transformation group than the 
group of three -dimensional rotations 152 - 54 1. 

Each I occurs once and only once. 
In a three-dimensional oscil lator,  as in a Coulomb potential, levels with 

We will now show that in this case,  a s  in the case of a Coulomb potential, 

Consider the operators* 

which satisfy the commutation relations 

The Hamiltonian now takes the form 

(6.5) 

(6.7) 

It is readily seen that the Hamiltonian (6.7) is invariant under the unitary 
transformation 

ai -+ 4; = f: ui/4/, a; --* u: = f: u p ; ,  (6.8) 

or ,  in other words, the Hamiltonian of a three-dimensional oscillator i s  
invariant under the group of third-order unitary matr ices ,  the U ( 3 )  group. 
The corresponding group for the n-dimensional oscillator is readily seen 
to  be the group U(n).  

Hamiltonian, [A!, HI, and also satisfy the following commutation relations: 

/*I j=1 

We now introduce the operators  A{ = u ; u ~ .  They commute with the 

These relations coincide with the known commutation relations for the 
generators of the U (3) group 155, 561, whence the conclusion that A$ is a 
generator of this group. 

Consider the combination 

If you are familiar with quantum field theory, you will readily recognize in these operators the creation 
and destruction operators of oscillation quanta. 
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5 6. THREE-DIMENSIONAL OSCILLATOR 

Since A for obvious reasons commutes with H and with all A ! ,  it is worth- 
while to separate it from the oth2r six operators A j .  

We thus introduce new operators 

(6.10) 

These nine new operators, eight of which a r e  independent, commute as 
before, but on account of the identity zBf = 0 they are generators of S U ( 3 ) ,  
the group of third-order unitary matrices with unit determinant. :: Note 
that the usual rotation group, 0 ( 3 ) ,  is contained a s  a subgroup in SU( 3) .  
The representations of S U ( 3 )  are well known: they are fully characterized 
by two numbers p and q.  
group a r e  realized by oscillator wave functions. Indeed, as our problem 
is concerned only with one species of operators ai, we can form only 
functions of the symmetric tensor type. 
according to the representation D ( p ,  q) with p = n, q = 0. 
and the range of the orbital momenta 1 in a state with given energy can 
therefore be derived from the general relations of group theory. 
treatment on p. 2 3 ,  however, is quite sufficient for our  purposes. 

Note that accidental degenracy is directly responsible for the fact that 
the classical path of an oscillator is a closed curve - an ellipse centered 
at the origin. 

and degenerate levels with various I ?  A classical particle occupying a 
definite point with definite values of the angular variables 0 and cp is 
described in quantum mechanics by a wave packet, i. e., a superposition 
of states with various 1. In the nondegenerate case, the phase relations 
between the states with various 1 change in time and the wave packet 
gradually spreads in space in accordance with the classical conception 
of motion in a trajectory of the form shown in Figure 4 .  

is observed in any spherical-symmetric potential, corresponds to the 
classical  theory of the exact conservation of the orbital plane. 

A characteristic distinction between the degeneracy in an oscillator and 
the Coulomb degeneracy is that the degenerate levels in an oscillator have 
the same parity, equal to the parity of n. 

To establish this point, note that the solutions of the one-dimensional 
problem have a definite parity, equal to (-lp( r~ = 1, 2, 3,  . . . ). 

It follows from the preceding that a superposition of oscillator states with 
different 1 but equal energy also has a definite parity, so its dipole moment 
is zero.  
conclusion is also quite understandable from the classical standpoint, as  
the oscillator trajectory i s  symmetric about the origin. 

Finally let  u s  consider the case of a one-dimensional oscillator in 
application to the so-called problem of "coherent states" (we follow the 
treatment of / 6 0 / ) .  Various important properties of these states were 
studied in Glauber's classical paper 1611, to which the reader  is referred 
for further details. 

However, not all the representations of this 

These functions a r e  transformed 
The degeneracy 

The 

What is the reason for the relation between the closed classical paths 

Note that the degeneracy of levels with various m for a given 1. which 

It is thus impossible to form a stationary state with d # 0. This 

This group is being currently used as the symmetry group of strongly interacting particles /57, 58/; 
numerous theoretical problems associated with this group were therefore resolved by physicists. Analogy 
between the symmetry of strongly interacting panicles and the symmetry of the oscillator is discussed 
in Dyson's remarkable paper /59/. 
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Ch. 1.  THE DISCRETE SPECTRUM 

What makes the coherent s ta tes  particularly important? The main 
feature, a s  we shall see in the following, is that their  properties a r e  very 
close to the classical  properties.  
provides the most natural description of the coherent properties of a light 
beam (e .  g., a l a se r  beam) in quantum mechanics. 
useful for treatment of soft quanta. 

function$,. States 
of this kind, i.e., the conventional stationary states,  a r e  not suitable for  
passing from quantum mechanics to classical  mechanics, a s  the mean 
coordinates and the mean momentum in these s ta tes  vanish, *< 

Introduction of these states apparently 

These states a r e  also 

Let the oscillator be in some state n, where it is described by wave 
Following Dirac 1621, we designate this state by In).  

whereas in classical  mechanics 

x (i) = A COS (d - 9). 

Let us t ry  to find a state I$=, ) such that 

X (0 = ($=I (4 I ;. I$d (0). 

A suitable state is found to have the form'** 

The average number of oscillation quanta in this state is 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

and the probability P ,  of finding an oscillator in the state In) is given by 
the usual Poisson distribution 

It i s  further readily seen that in this case 

whence 
h A X * & = = ,  

(6.16) 

(6.17) 

i.e., the uncertainty relation for the coordinate and the momentum has its 
minimum value in this case.  

* *  
This is the general property of stationary states of the discrete spectrum. 
These states were first considered by Schroedinger /63/. 
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5 6. THREE-DIMENSIONAL OSCILLATOR 

We will now prove our propositions. Expression (6.13) can be rewritten 
in the form 

x (4 = ($GI (0) I (4 I O C l  (0)) = 
= xo ($GI (0) I M4"' + ace'.* IqCl (0)); (6 .1  3')  

here 

i ( t )  = &B'&-'bt = *o (m-iu' + U+@t), 
= F+ . ITZ 

It i s  readily seen that condition (6.13) is satisfied for s ta tes  la) such that 

a la) = a la>, (6.18) 

where a = peiQ is a complex number. 
Indeed, for such a state we have 

xo 
<a1 2 (4 la> =n (e'-' + a*e"%a la> = f ixop(ula)  cos (of -9). (6.19) 

We now expand the state la) in s ta tes  In>: 

m 

(6.20) 

Left-multiplying (6.18) by ( n l  and using the identity (nl a = mi (n + 11, 
we find 

(n+ 1 la> = ++<nla>,* n+ 

* ~ n > .  
n r g  m 

so that 
OD 

(6.21) 
an 

(nla> =m ( o I ~ ) ,  la> = ( ~ I Q )  

(Ola) is found from the normalization condition for  the state (a): 

<ala>== 1, l < o l a ) l ' ~  O0 - ; ;r=I<OIQ)I'd'=I,  P- 
n d  

whence follows (6.14). 

therefore seem that there exists a representation ;= fi)'W;, where 6 is a 
Hermitian operator;  it was shown in 1641, however, that no such operator 
exists.  

It is now c lear  that the eigenvalue a has the form a = (TQ'~+. It would 

We now substitute in (6.14) In) = =IO); then m 

1 
This identity is readily obtained from the fundamental equality I n)  == (a+)" 10 .>. 
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Ch. 1. THE DISCRETE SPECTRI!hI 

We have obtained a simple expression for the operator which transforms 
10) into la). This operator, however, is not unitary. Consider the unitary 
operator 

A (a) = p + - a * a .  (6.23) 

Using Baker and Hausdorf's famous identity /65, 66/ 

e A  . e B  = e ( A t B + f l A , B l ]  (6.24) 

which is valid when [ A M ,  B ] ]  = [ E  [A,E11 = 0, and putting A = a d ,  B = - -*a,  
[ A , B l  = [aiz = p2 , we obtain 

(6.25) 

whence it follows directly that la)  = A (a)10). 
Note that the operators A (a) have the following properties: 

A (a) = A' (-u), A' (a) A (a) = A (a) A +  (a) = 1, 
A (+)A (a) = A  ( a ) A  (-a) = 1, 

(6 .26 )  
A (-a)la> = 10). 

It i s  also readily seen that 

( 6 . 2 7 )  I [a,  A (a)] = a d  (a), 
A +  (a)aA (a) = a f a,  A+ (a)a+A (a) = a+ + a*. 

Finally, let us consider the orthogonality and the completeness of the 
coherent states. We have 

(6.28) 

These states a r e  thus not orthogonal to one another. They nevertheless 
constitute a complete system of states. 
integral 

This can be verified by taking the 

!@a I a) (a 1, where a = a, + idz = pe", d2a = dal da,. 

Inserting for la)  i t s  expression from (6.14), we find 

We thus have the equality 

which i s  in fact the completeness condition for a system of states. Using 
this equality, we can expand any state in t e rms  of the coherent states la). 
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In conclusion note that coherent states can be applied to derive without 
difficulty a closed expression for the transition probability of an oscillator 
between two states in an arbi t rary external field /SO/. 

5 7. THE VIRIAL THEOREM AND ITS GENERALIZATIONS 

Coulomb and oscillator potentials a r e  particular cases  of the general 
power potential U = k r n .  
which establishes a relation between the average kinetic and potential energy. 

Following Fock /69 / ,  we will f i rs t  derive this theorem from the 
variational principle. 

According to the variational principle, the expectation value of the 
operator H for the eigenstate (pn of H with the eigenvalue En is stationary. 
In other words, i f  

For  these potentials we have the virial theorem;:: 

then fi = I(I,*H(I, d r  or,  better st i l l ,  :'-* 

for (I, =$,, + 81) differs from E,, by t e rms  of the order (ti$)*; t e rms  of the 
order  t$ vanish. In particular,  for q0 corresponding to the lowermost 
(ground) state the assertion is that the substitution J, = (I,o gives an absolute 
minimum #= E,. 

eigenfunctions of the operator H: 
The variational principle is best verified by expanding the variation in 

using the orthogonality of the eigenfunctions, w e  find that the variation of R 
is proportional to (SC,,,)*. 

potential energy, T the kinetic energy expectation value. 

similarity transformation 

We now write B = u+ r. where 

Consider a special kind of variation of (p, namely an infinitesimal 

is the expectation value of the 

(7.2) 3 
$' = $ +a$ = ( I  + 7 8 ) 7 + 1 ( 1  + 8)rl, 

where E is a small  quantity. The factor before (I, ensures that the normali- 

zation is conserved, S I $ ' p d r ' = S l $ l ' d r .  
6U - - 

Since U = krn, we clearly have --=-na. 
U 1 

In classical mechanics, this theorem was already known to Clausius. In quantum mechanics it was fint 
established by Born. Heisenberg, and Jordan /67/. Various formulations of the virial theorem and its 
generalization to the case of a continuous spectrum can be found in /68/. 
In (7.1) there is no need to be concerned about the normalization of the wave function being varied. .. 
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Ch. 1. THE DISCRETE SPECTRUhl 

The kinetic energy is proportional to SIV$Jadr so that contraction of all  
distances increases the kinetic energy in inverse proportion to the square 

of the contraction factor 
- 

= 28. 
T 

We now demamd that iifi = 6n + 6T = (-ran + 27ia be extremum. Hence 

(7.3) 

which i s  the virial  theorem. 
Coulomb interaction the total energy H in a stationary state is equal to the 
mean kinetic energy with minus sign. 

The variational principle provides a vivid answer to the question, "why 
the electron does not fall to the nucleus?" A s  the electron approaches the 
nucleus, i ts  potential energy being proportional to 11 r decreases  (the 
absolute value of the negative potential energy increases),  but in virtue 
of the uncertainty principle the electron momentum grows a s  1 I r ,  so that 
the kinetic energy increases a s  l/rB. The total energy therefore has  a 
minimum at a well defined average distance of the electron from the nucleus: 
further approach ("fall") of the nucleus is precluded by excessive growth of 
kinetic energy. 

than l / r l f o r  r +  0, the Sch. Eq. cannot have a definite ground level, 
and in this potential the particle will fall to the attracting center.  

calculation of the mean value of 

in a stationary state z(rp)  = tr ( IH,  rpl) = 0; moreover, an analogous 

expression obtains for any operator A :  

For  a harmonic oscillator T = n, and for a 

We see from the preceding that for potentials which increase faster  

Another method for the derivation of the virial  theorem is based on 

(rp) = 
d IH, rpl . It i s  readily seen that 

d i 

( A )  = T ( [ H ,  1 A ] )  = 0. (7 .4)  

This is a generalization of the virial  theorem 1701. A nontrivial aspect 
of the whole procedure is the choice of an appropriate operator A .  
choice may lead to some remarkable relations for mean values. 

potentials 1711. 

A clever 

We will apply the generalized virial  theorem to Coulomb and harmonic 
The Coulomb Hamiltonian can be written in the form 

P: H=-+ 2m (7.5) 

where 
. n  d 

r dr 
p , = - g - - - r r - i i f i  (x a + 7). I P r ,  11 = - i A ,  

= pI . ~4!' a 
+ P r = - - -  mra ra * 

For  the operator A we choose p r r s + l .  Equality (7.4) now takes the form 

(7.6) 
d -  
,ji <jrrs++') = (p,rS+l) + ( p r i r s )  + . . . + ( p r r s t ) .  
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P In ( 7 . 6 )  the operator r = + can be moved to  the left using the identity 

and this gives 

To simplify the last  t e rm in this expression, consider the equality 
( F )  = o o r  

Expressing p, and p: in t e rms  of r by (7.5) and making use of (7.8), we find 

2E (s + 1) ( r5)  + a (2s + I )  (P-1) + sfi' (T SI - 1 - f ( I  + I ) )  ( r 5 - 3 )  = 0. (7.9) 

We have thus obtained a recursion formula for the mean values of the 
powers of r .  This relation was originally derived by Kramers  172 I using 
a different method. Note that for s = 0. (7.9) yields the ordinary virial  

theorem and the te rm 4m (rS-') allows for the fact that the operators r 

and p ,  do not commute. 
for the classical  case. 

Here 

fi* s (9 - 1) 

Therefore i t s  omission gives recursion expressions 

Let us  now consider the case of a three-dimensional harmonic oscillator. 

(7.10) I h' 21 m H = -2;;; P: -k 2m 7 + 7 gar4. 

It is easily seen that relations (7.6)-(7.8) a r e  valid as before. Express- 
h g  br and P: in terms of r from (7.10) and substituting in (7.6') .  we obtain 

(7.1 1) 2 E ( s  + 1) (r*) -m*(s + 2) (rat*) + %s[  - f(f + I ) ]  (rs-*)  = 0. 

As in the previous case, s = 0 yields the vir ia l  theorem. Note that unlike 
(7.9), relations (7.11) include only odd o r  only even powers of r .  
not surprising, since the Hamiltonian (7.10) is  even with respect to r ,  i. e., 
it does not change on substitution r -+ - r .  

This is 

I 8. 
PHYSICS 

IDENTICAL PARTICLES AND STATISTICAL 

The problem of motion of two interacting particles is reduced to a one- 

Therefore the Sch. Eq. with cp dependent on the three coordinates is 
particle problem in quantum, a s  well as classical  mechanics. 

applicable not only to the motion of electron in the field of a heavy fixed 
nucleus, but a lso to the motion of a diatomic molecule. In this case we 
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use Born's and Oppenheimer's approximation: for given position of the 
nuclei. the electrons a re  assumed to occupy the lowermost energy state. 
The energy of the entire system, including the energy of the electrons,  
which depends on the distance between the nuclei, is regarded a s  an 
effective potential in which the nuclei move. 

R ( r )  Y l ,  (6, cp), where r ,  6, cp characterize the vector r12 from nucleus 1 to 
nucleus 2 .  

molecules H,, C,, N,, 0,. 

should be symmetric: these nuclei a r e  called bosons, a s  they follow Bose 
statistics. 

The situation is particularly simple i f  the nuclear spin is 0. A s  the wave 
function i s  symmetric under interchange of 1st  and 2nd nuclei, i. e., under 
sign inversion T ~ ,  + - vl, (in this transformation r + r,  8 -+ rc - 6, cp +cp+n), 
the odd values of 1 a r e  excluded. 

Experiments show that a C, molecule comprising two C12 nuclei may 
occupy only states with 1 = 0, 1 = 1, 1 = 2 ,  1 = 4 ,  etc. A carbon molecule 
comprising two different nuclei C", C13 o r  C1,, C14 may occupy all  the odd 
and even states 1 = 0, 1 = 1, 1 = 2, 1 = 3,  etc. 

Sometimes the difference between the classical  (Boltzmann) statist ics 
and the quantum statist ics of Bose and Einstein is formulated a s  a difference 
in the method of counting of states.  

we distinguish between two states:  A,B,and BIAS; in quantum statist ics,  if A 
and B a r e  identical, the system has only one state,  with one of the particles 
in state 1 and the other in s ta te  2 .  

the quantum-statistical properties have nothing to do with the method of 
counting. 
forbidden and do not occur in nature,  although they do exist in systems 
comprising different particles.  For identical particles we have an entirely 
different mechanics, which forbids certain states;  the different statist ics 
is simply a consequence of the different mechanics. 

of committing an e r ro r :  that no two particles may occupy the same state 
is an obvious restriction. 

The situation which is fairly c lear  for a diatomic molecule is not so  
transparent for independent particles in a general field and especially not 
for  a continuous spectrum. 
we a r e  dealing with two different s ta tes  AIB, and &A,. 
close properties, the energy of these two states is nearly equal. Moreover, 
if A and B interact, the solutions of the Sch. Eq. a r e  the combination s ta tes  

The solution of the Sch. Eq. for a diatomic molecule has  the form 

A novel situation a r i s e s  i f  the two nuclei a r e  identical, as in the 

If the nuclei comprise an even number of nucleons, the wave function 

Consider two particles A , B  and two states 1 ,  2 .  In classical  statist ics 

The carbon molecule C 12C12 provides an excellent example: here  clearly 

In this Bose system, certain states (those with even 1 )  a r e  

For  fermions the situation is s impler ,  and even a novice is in no danger 

In the above example, for different A and B 
If A and B have 

AIB, + BIAS and AIB, -BIAS. 

Interaction mixes the original s ta tes ,  but according to general theorems 
it does not affect the overall number of states ( 2  = 2),  just a s  rotation of 
the coordinate axes does not affect the dimension of space. 
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5 8. IDENTICAL PARTICLES A N D  STATISTICS 

If the two particles A and B a r e  two identical bosons B = A ,  only the 

For fermions 
symmetric state A,B, + BIAe exists; the second, antisymmetric state is 
forbidden in the same sense a s  C12C12 with 1 = 1 cannot exist. 
the symmetric (even) state A,E, + B,A, is forbidden and AIB,  - B,A, exists.  

different. 

which a r e  occupied on the average by these particles. The probability of 
finding two particles on one level (which is strictly forbidden for fermions) 
i s  therefore small. In this case,  the total number of s ta tes  for different 
particles differs from the number of states for bosons (or the equal number 
of s ta tes  for fermions) by a constant factor NI, where N i s  the number of 
particles. 
t e rm to the entropy and the free energy; classical  statist ics therefore leads 
to correct  thermodynamic resul ts  in this case. 
which a r e  independent of the additive constant in Bose and Fe rmi  statist ics,  
will coincide with the resul ts  of classical statistics in the l imit  of low 
occupancy. 

the levels in a diatomic molecule a re  missing? To this end a molecular 
symmetry number 2 is introduced (for a diatomic molecule) and the phase 
volume is divided by 2 (or alternatively kln2 is subtracted from the entropy). 

It is interesting to t race the origin of the same number 2 in a diatomic 
molecule with nuclei of spin 1 / 2 ,  e.g., H,. 
is representable as a product of orbit and spin functions. 

-azpl of two spin 1 / 2  particles 
corresponds to zero  total spin. 
s = 1: there are three such functions: s, = 1, %ae; s, = 0, a,$, +al; 
s, = - 1, For  s = 0 the orbit function is even, 1 = 0, 1 = 2 . .  . . 
(para-hydrogen). For s = 1 the orbit function is odd, I = 1, 1 = 3 , .  . . 
(ortho-hydrogen). Thus, some rotational states have one spin state,  g = 1, 
while others have three spin states,  g = 3, t h e  average being I =  2 .  

A molecule comprising two different atoms, e.g., H T  ( a  hydrogen- 
tr i t ium molecule), has  four spin states* for each I ;  for any 1 there  is both 
s = 0, g =  1 and s =  1, g =  3. 

= 2 
for  a molecule made up of identical atoms actually corresponds to the 
symmetry number 2 .  

to cope successfully and correctly with various problems in the theory of 
molecular dissociation and in general with problems involving low occupancy 
numbers; in such systems the resul ts  a r e  independent of spins and nuclear 
statist ics;  the results a r e  further independent, a s  can be shown, of the fact 
whether we a r e  dealing with a single species of nuclei or with an isotopic 
mixture. 

One cannot expect correct  resul ts  without clearly understanding the very 
foundations of classical, Bose and Fermi  statistics, a s  elucidated (we hope) 
by the examples of this section. 

In classical  statist ics the s ta tes  a r e  counted as  if al l  the particles were 

Let the number of particles be much l e s s  than the number of levels 

The constant factor in the number of states introduces a constant 

The observable quantities, 

How a r e  we to reconciliate the classical  statistics with the fact that half 

The wave function in this case 

The antisymmetric spin function 
The symmetric function corresponds to 

The drop from g = 4 for a molecule comprising different atoms to 

The introduction of the symmetry number enables the classical  statist ics 

Note that these four states can be counted simply as a product of the two states of H ( s z =  +1/2. s,= -1/2) 
with the same two states of T. The total-spin classification does not alter the position. 
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Chapter 2 

THE CONTINUUM 

§ 9 .  INTRODUCTION. CONTINUUM WAVE 
FUNCTIONS WITH 1 = 0 

In this chapter we consider s ta tes  which form a continuum. These 
states,  a s  we know, describe particle scattering in a potential field. 
The theory of scattering is an important subject in quantum mechanics 
which has been developed in considerable detail. 
treatment of this theory can be found in Landau and Lifshitz's book 181  
and in the recently published monograph by Goldberger and Watson 1 7 3 1 ,  
which is devoted in i ts  entirety to collision theory. The latter book also 
gives a detailed bibliography on the subject. 
some of the properties of wave functions forming a continuous spectrum. 

as it follows from (1.8), a r e  essentially different from zero in the entire 
space. 
we a r e  left only with condition (1.7) imposed on the two linearly independent 
functions @). 

solution which satisfies condition (1.7); furthermore,  a r e  a 1  solution may 
be chosen. 
the present section, and the case 1 # 0 is treated in § 10. 

the Sch. Eq. has  solutions for all 1 for a given E > O .  
superposition of these solutions is again a solution of the Sch. Eq., and 
vice versa:  any solution of the Sch. Eq. with a definite positive energy can 
be represented a s  a superposition of solutions with different 1 and fixed E .  
It 'is because of this property that we can choose different complete systems 
of wave functions. 

is a superposition of a plane transmitted wave plus a scattered wave, i. e., 
a state whose asymptotic behavior for r-+ 00 is described by dkz+ 
+ f (e, cp)e+lkr/r. We can also form states  with the asymptotics dk* + 
+ fl (e, cp) &kr / r ;  here the function fleJkr / r  describes an incoming wave and 
e'kz describes a particle emerging in the direction of the z axis. 
functions, however, a r e  encountered relatively seldom. The topics relating 
to this problem a r e  treated in § 11. 

Finally the last  section ( §  1 2 )  of this chapter gives a derivation of the 
so-called optical theorem and i t s  generalization is considered. 

Let us  now proceed with a more detailed discussion of states with 
fixed E and 1. 

The most comprehensive 

Here we will discuss only 

First consider continuum functions with given E and 1. These functions, 

The condition of vanishing a t  infinity therefore does not apply and 

Hence, for a fixed energy E and any 1 ,  we may form a 

Some properties of this solution for 1 = 0 a re  considered in 

In the case of a continuum, as opposed to the case of a discrete spectrum, 
Therefore any 

An important state frequently encountered in the theory of scattering 

These 

We will want to identify the s ta tes  x(*). In a state described 
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5 9. CONTINUUM WAVE FUNCTIONS WITH / = 0 

by a function $ ( r ) ,  the current of particles at  a point f is given by 

(9.1) 

(9.5) 

Zero potential clearly leads to zero  scattering. Therefore xc descr ibes  
free, unperturbed motion of particles in space (with zero  orbital momentum 
relative to r = 0). The coefficient A (k)  in 

Xr = A (&) (xY' - S (k) I$)) 

(this is the amplitude of the incoming wave) is clearly an arbi t rary para-  
meter  independent of the potential U (r); A (&) depends only on the number of 
particles "aimed" a t  r = 0 from infinity. 
determined entirely by the form of the potential, and it is this function that 
specifies the scattering power of the potential. 

S ( k ) ,  on the other hand, is 

, we find Inserting the functions -- i p 
y z i r  

where v = is the velocity corresponding to the wave vector k. Thus, 

the function x!+) describes particles which move with velocity v inal l  directions 
from the origin ( a  divergent outgoing wave) and the function &)describes 
particles which move with velocity v toward the origin ( a  convergent in- 
coming wave). The total incoming (p) o r  outgoing ( x ( + ) )  flux of particles 
crossing a sphere of radius R every second is clearly given by 

4rrR2j(f) (R)  = & v. (9.3) 

The normalization of the functions xsf' used in (1.8) thus corresponds to 
the- fact that v particles pass  every second through a large sphere, the 
particle density p being 1/Ws particles/cm3. Hence it follows that the 
functions ~ ( f )  are not solutions of the Sch. Eq. for r = 0, a s  this point 
is a source o r  sink of particles.  
formed into a l inear combination X h  ( r )  which shows proper behavior a t  
r = 0. According to  (1.9), k includes both xi-) and xr). 
corresponds to  an incoming flux of particles falling on the force center 
f rom infinity, and the latter represents  the outgoing flux. En other words, 
Xr (1) descr ibes  the scattering of particles in a potential field V (r) .  

to be identically zero. The solutions 

The two functions xi*), however, can be 

The former 

Let us  consider in more detail the case 1 = 0. The potential is assumed 

xi*) (1) eft& (9.4) 

are then exact solutions of equation (1.6') in the entire space, except the 
point r = 0. The boundary conditions at r = 0' are satisfied by the unique 
solution 

35 

. 



Ch. 2.  T H E  CONTINUUhl 

To isolate the part of the wave function which describes actual scattering 
in a potential field, we write xt ( r )  in the form 

Xt ( r )  = A (k)  [Xi-' - Xh" - (S (k) - 1)X~)I. (9.6) 

The first  two t e rms  in brackets coincide for r > R  with the wave function of 
f ree  motion ( see  (9.5)). 
scattered wave. 

particles. 
center should be equal to the number of outgoing particles. 
I S  (k)l = 1 and we can always write S (k) in the form 

The last  t e rm is therefore the one describing the 

Scattering by a potential cannot involve absorption or creation of 
Therefore the number of incident particles hitting the force 

In other words 

(9.7) 

where 6 i s  a rea l  function, called the scattering phase. In free motion we 
clearly have 6 (k) = 0 (see (9.6)). 
for r > R can always be written in one of the following forms: 

In general 6 # 0, and the wave function 

Xt  ( r )  = ( x i - ) c i 6  - X r ) @ 6 )  = 

= - 2iAei6 sin (kr  + 6) = - 2iA [sin kr + eia sin 6e'krI. (9.8) 

What was our justification for splitting up the wave function into two 
par t s  and assigning them the meaning of wave functions for the incoming 
and the outgoing flux of particles? The question can be phrased differently. 
For a continuum of states a rea l  wave function can always be chosen. 
know, however, that in states described by a rea l  wave function, the 
particle current i s  zero. Were we right in identifying the part  of the 
function proportional to eikr in the last  t e rm in (9.8) with scattered particles? 

packets. Take the case of particle transmission through a potential bar r ie r .  
The potential has the form (Figure 5) 

We 

To answer these questions, we have to consider the motion of wave 

I U = U ,  for -a<x<a ,  
U = O  for x < - a ,  a < n .  

The wave function, as  we know, can be written in the form 

. Et 

(etkx - A (k) eikX) e-'?i- for x < - a, 

for  x > a ,  
'$E ( x ,  t )  = 

(9.9) 

(9.10) 

where A is generally called the reflection coefficient. 

-Q Q x 
FIGURE 5 .  
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5 9. CONTINUUM W A V E  FUNCTIONS WITH I =  0 

Now we combine states with energy E-E, into a wave packet, 

(9.11) 

where AE i s  assumed to be so small  that the energy dependence of A and B 
is ignorable and for k we use the approximate expression 

Elementary calculations give 

where 

(9.12) 

(9.13) 

The function cp(+) ( x ,  t )  does not vanish only when x-vot- 0, and cp(-) does 
not vanish only for x + v,t z 0. Consider the region to the left o f thebar r ie r ,  
where x < 0. 

(the wave from minus infinity 
incident on the bar r ie r ) .  Fo r  t > 0 
the position changes: there is no 
te rm cp(+) left of the bar r ie r ,  but 
the t e rm #-) is no longer zero (a wave 
reflected from the bar r ie r ) .  To 
the right of the bar r ie r  x >  0, and 
therefore the condition x - v,t = 0 
can be satisfied only for f > 0. 
Thus, for t < 0 the wave function 
i s  identically zero  everywhere to 
the right of the bar r ie r .  Fo r  t> 0, 
on the other hand, a wave B (&)#+) 
is formed, propagating in the 

We see from Figure 6 that for t < 0 only @+) does not vanish 

t cfl 

-0 a 4 
-a 0 

FIGURE 6. direction x +  + 00. 

The coefficients A (k,) and B (&) 
clearly determine the intensities of 

the reflected and the transmitted wave, and we see that e " x  and may 
indeed be interpreted with complete justification as the wave functions of 
particles propagating in the directions x = + m and x = - 00, respectively. 

Let u s  further consider the normalization of continuum wave functions. 
The continuum functions x k  ( r )  vanish nowhere in the entire space, and they 
cannot be normalized to unity a s  in the case of a discrete spectrum. 
Normalization to unity corresponds to a condition that there is but a single 
particle in the entire space. 
different from zero,  normalization to a single particle in the entire space 

Since a continuum function is everywhere 
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Ch.2. T H E  C O N T I N U U M  

(i. e., i 1 %  (r)l'dr = 1) is feasible only if we take a zero  normalization coeffi- 

cient A ( k ) .  There is, of course an alternative approach, defining normali- 
zation in the limit: we f i r s t  take not the entire space but only the bounded 
region enclosed in a large sphere of radius R .  Here the range 0 < r < R is 
bounded and we can find a finite normalization constant A(&) .  In the final 
result R i s  allowed to go to infinity, and A to zero, so that the product [AIR 
remains constant. This procedure, however, i s  unnecessarily complicated, 
and i s  hardly ever used. 

8 -function: 
The common normalization procedure calls for normalization to the 

[ x k  ( f )  x i ,  ( f )  dr = 6 (k  - &'). (9.14) 
0 

We will now prove the feasibility of this normalization. Consider two 
close values k and 4: 

x; + (k' -v)%, = 0. 
x; + (k; -v)x;, = 0. 

We multiply the first  equation by x i ,  and the second by xh and then 
subtract one from 

Integration over r 

All the functions vanish at the lower limit; using the asymptotic expression 
for the wave functions X I  - A (k) sin (kr + 6), w e  obtainafter some manipulations 

Since R 00, the last  t e rm is effectively equal to zero. Indeed, it is a 
rapidly oscillating function of k and k,, and the frequency of oscillations 
goes to infinity with R. Any integral whose integrand comprises such an 
oscillating function multiplied by some sufficiently smooth function falls 
off to zero. It is in this sense that we mean that the functions a r e  effectively 
equal to zero. 

If (k ,  - k )  i s  a fixed finite quantity, the f i r s t  t e rm is also effectively equal 
to zero. F i r s t  note that the 
difference 8 (k,) - 6 (k) is ignorable compared to R (k, - k ) ,  SO that 

Let u s  now consider the case  (kl - k) + 0. 

R 
(9.16) 1 sin (k, - k )  R 

0 
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5 9. CONTINUUM WAVE FUNCTIONS WITH I =  0 , 
However, w e  know that 

nb (x) . (9.1 7) lirn - = 
4 4  .x 

sin ax 

The graph of 

for  x - 1 and rapidly falls off with increasing x .  

function is zero for x # 0 and infinity for  x = 0. 

is shown in Figure 7. This function is  relatively large 

In the limit a s  a -+ 00 this 

The a rea  under the curve i s  
m 

FIGURE 7. 

We have thus proved equality (9.17). Using this equality, we write 
(9.1 6)  in the form 

(9.18) 

The feasibility of 8-function normalization is thus established, and the 
corresponding normalization coefficient i s  

A(&)= c. (9.1 9) 

Sometimes the continuum functions a r e  conveniently normalized to 
& (9 (k) - 9  (k ' ) ) ,  where cp (k) is  some function of k. 
lization constant is 

The corresponding norma- 

(9.20) 

A" For  example, in case of normalization to the energy &-function cp= 

the normalization constant is  

and 

A @ ) =  G. (9.21) 
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Discrete spectrum functions vanish for  r +  00. By (9.15) we therefore 
immediately have that the continuum functions are  orthogonal t o  all the 
discrete spectrum functions. * Moreover, any two discrete spectrum 
functions with different energies E,# E,  are also orthogonal. We may 
therefore always normalize the wave functions so as to obtain a n  ortho- 
normal system: 

(9.22) 

Here 8,, is  Kronecker’s delta. 

a complete system. This means that any sufficiently decent function f ( r )  
can be expanded in functions of this system, 

The wave functions of the continuum and the discrete spectrum constitute 

f ( r )  = S dkc (k) X ,  ( r )  + XCnXn ( r ) .  

The coefficients C ( k )  and Cn are easily obtained multiplying the two s ides  of 
(9.23) by x; ( r )  and x i  ( r )  and integrating over r :  

(9.23) 

c (k )  = S X;  ( r ’ )  f ( r ’ )  dr‘, cn = x i  (t’)  f (r’) dr’. (9.24) 

Insertion of (9.24) in (9.23) gives 

Hence it follows that the expression in brackets can be identified with the 
8 -  function: 

m 

X X a ( r ) X ; ( r ’ )  + S d k X k ( r ) X ; ( r ’ )  = 6 ( r - r ’ ) .  (9.26) 
0 

If the continuum functions are  normalized to  the energy 6-function, 
expressions (9.23)-(9.26) remain valid provided that xk is replaced by X E  
and the integrals over k a re  changed to integration over E .  

J 10. 
MOTION IN A COULOMB FIELD 

MOTION WITH ORBITAL MOMENTUM 1 # O .  

The wave function of a particle in a state with a given orbital momentum 
%kI ( r )  1 and given momentum projection m has the form y Y t , , , ( O ,  cp), where 

and x k l  i s  t o  be found from equation (1 5). 

Note that if the continuum functions are replaced by free motion functions, the latter are no longer 
orthogonal to the discrete spectrum functions, and this may lead to considerable errors in calculations. 
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The properties of spherical  functions which describe the angular 
dependence of a wave function with given 1 and m have been studied in 
fairly great detail. 

from the general physical arguments and the analogies derived in the limit 
of classical  motion. I;: 

rn = +_ 1 .  
In this case ell (e) clearly has no nodes (since sin mcp and cos mcp have the 
maximum number of nodes). In the limit of large 1 this case corresponds 
to an orbit lying in the equatorial plane with the angular momentum vector 

along the z-axis. 

We will only consider here  a number of theorems which readily follow 

We s ta r t  with a function corresponding to  maximum Iml, i. e., 

In this limiting case we thus have I (e) I * = 6 (0 - +) . 
This estimate can be improved by finding the law according to which 

I ell (e)[* approaches 6 (e- $) with increasing 1 ,  growing narrower and con- 

centrating toward the equator. 

tion m on the z axis is equal to 1 .  We can thus find the average angle a 

between the z axis and the normal to the orbital  plane, cos u = ~ - 
- l - - - ,  u=: G. It is readily seen that the average angle fi between 

a vector lying in this inclined plane and the equatorial plane is  e= = a =  

Note that the square of the angular momentum is 1 ( I  + 1) and its projec- 

I 
m- 

21 
i 

= fi. 
Thus for large but finite I ,  ler1 @)Ia has a maximum at e = $  and i ts  

effective width is  fi. This means that it can be approximately replaced 

; the pre-exponential coefficient is determined from the 1'7 e-i (e- $)* 
by x- 
normalization of spherical  harmonics. 

with given la rge  I and with m = 0 ? Such functions a r e  encountered, in 
particular,  in scattering problems, since a particle which moves along 
the z axis  identically has rn = 0. 

The properties of the sought function can be elucidated by considering 
motion of particles in circular orbits.  Take the set of a l l  circular orbits 
with axes perpendicular to  the z axis, i.e., circular orbi ts  in the x, yplane 
(for these orbi ts  m = 0). 
for the orbit axis. 

a r ea  of unit solid angle (i.e., per  unit surface area of a sphere) is maxi- 
mum, going to  infinity at the poles for e = 0 and 9 = x .  

As one 
dtl moves along the meridian, all  the d9 intervals are  equiprobable, dW = y. 

Dividing dW by the a rea  which corresponds to the angle de, dS = 2n sin 0 de ,  

How a r e  we to envisage the opposite extreme case, namely a function 

All the directions in the x, y plane a r e  equiprobable 

All orbits intersect at  the poles and the probability density per surface 

W e  will now derive an expression for this probability density. 

we find 

A similar treatment of Clebsch-Gordan and Racah coefficients was given by Wigner /74/. 
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Ch. 2. T H E  CONTINUUM 

It should be noted that Ym (e) is actually an alternating function with 1 nodes 
in the interval 0 < 8 < n (its 1 node lines a r e  the parallels); the above 
expression is significant in so f a r  a s  we ignore these oscillations. 

oscillations a r e  ignorable only if 1 > 1, and we take AB > f . 

m = 0 and l > l .  We see from the above expression that the density is  

minimum at the equator: for 8 = $the  average 

the average for the entire sphere is  =. 
l e s s  than the average by a factor of G. 
density fluctuates from 0 t o  ;T if the fine structure (the nodes) is  taken 

into consideration; for odd I ,  8 0 on the equator; for even I ,  l Y ~ l ' / ~  = 

and ;i- is obtained by averaging over the oscillations. 

an asymptotic value independent of 1 exists in the limit of 1 > 1. 
poles 1 Ut# + 00 when 1 -f 00. 
8 = 0 and 8 = X: 

The 

Let us estimate the maximum deviation from spherical  symmetry fo r  

I is  equal to =, whereas 
I The density near the equator is  

Note that, str ictly speaking, the 
4 

I 4  , 
It is  remarkable that 2 

Near the 
For  finite 1 ,  the maximum is  observed for 

If the experimental angular distribution is  stretched along the z axis more 

and near the equator less  than by f = 0.65 of the average, we can be certain 

that we a r e  dealing with interference of states with different 1. 

z > 0 and 2 < 0, is clearly possible only in the result of interference 
between states with even and odd 1. 

For  particles of spin 1 / 2  the total momentum j is a half-integer. 
j can be formed in two different ways, j = ll + and j = l 3 - l I z .  

The wave functions a r e  products of orbit and spin functions, formed in 
compliance with the rules for momentum composition. 
following notation for spin functions: 

Now, asymmetry relative to the equatorial plane, i. e., asymmetry for 

Every 

We introduce the 

I 1 u - + s z = T ,  P - T s r = - -  2 '  

Explicit expressions for a few of the first  wave functions are given below: 

(10.1) 



9 10. MOTION WITH I + 0. MOTION IN A COUmMB FIELD 

9 = - {f Y*,-P t Y,,-lP. 
3 r n = - - ,  

(10.1) 

A remarkable property of these functions is that the total particle density 
af ter  averaging over the spin directions depends only on j and m ,  i. e., it 

3 i s  the same for j = 4 + 11, and f = 1, - '1,. Thus, for example, for f I z, 
m = -  we have in the first  case (P*/,) 

and in the secmd case  @a,,) 

i. e., both resul ts  a r e  equal. 
1 In the particular case f = 

Sa,, ( I  = 0) but a lso for P,,(1 = 1): 

the total density is isotropic not only for 

1 We can distinguish between 11 -t 7 and 1% - f only by polarization measure- 

ments, i. e., by measuring both the total particle density and the spin 
direct ion. 
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1 Interference between l1 + and la - creates  asymmetry of total density 

about the equator. In particular, although the individual states SI, and 
a r e  isotropic, interference of these states produces anisotropy: the maxi- 
mum corresponds to the l inear combination 

i In this case W = Iqp = 

The above properties a r e  specific of spin 1 / 2  particles, and it i s  these 
particles which a r e  of the greatest  importance in practical considerations. 

sire will now proceed with a discussion of radial wave functions. 
Virtually all the specific nuclear interactions a r e  short-range inter- 

The centrifugal potential which enters the Sch. Eq. for 1 f 0, on 

(1 5 cos e ) .  

actions, i .  e., they can be taken equal to zero outside a certain sphere 
r = R . 
the other hand, extends fa r  beyond any sphere r = R  and essentiaily modifies 
the form of the wave function for r >  R .  

For r > R ,  the equation for Xk; has the form 

which is reduced to Bessel ' s  equation by a substitution x = fiZ. 
general solution of this equation in the exterior region is  thus 

The 

Xai ( r )  = vi Ziti/. (kr) ,  

where Zits,, is any of Bessel 's  functions of order  1 + I f2 .  

A s  the two independent solutions we choose 

(10.2) 

where H(1) and H@) a r e  Hankel's functions. * For  large kr  these two 
solutions behave a s  

(10.3) 
el (hi-!!!) xi?' ( r )  - e  

and correspond to  incoming and outgoing particle fluxes. 
a r e  a generalization for l #  0 of the functions XL5)and have the same physical 
interpretat ion. 
particle of momentum I can be written by analogy with (9.6) and (9.8) in 

These solutions 

The continuum functions describing the scattering of a 

Their These functions are polynomials of degree I of the argument -, multiplied by e i i (kr -$ ) .  1 
kr 

explicit form is obtained from the formula 
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Here eZi8I E SI (k) has the same role a s  So for 1 = 0. 
identically zero,  the above expression for the wave function should be valid 
in the entire space. 

If the potential U is 

The functions xi?), however, behave for small  k ras  

(here  I' is  the gamma function) and a r e  clearly irregular at 
To obtain a regular function, we should form the difference 

(10.5) 

the origin. 

(10.6) 

where 

is  the ordinary Bessel function, 2nd this difference vanishes at  the origin. >iz 

Comparison of (10.4) with (10.6) shows that i n  case of zero potential the 
phase 6l vanishes and SI (k) = 1, in complete analogy with the results of I 9. 
The scattering power of the potential i s  determined, a s  before, by \SI  (k) - 11'. 
A s  regards SI (k) itself, it cannot be computed unless the solution xi?) ( r )  of 
the Sch. Eq. inside the potential range ( r <  R )  has been found. A s  soon a s  
this solution i s  known, SI (k) i s  calculated by (1 .ll), where xi*) and x$" a r e  
replaced by their  analogs xi:) and x:4'. 
(9.18)- (9.26), which define the normalization for 1 = 0, remain valid for 
xn with any 1 .  

quantitatively but not qualitatively. 
qualitative features of the solutions of the Sch. Eq. are  the same ir. both cases .  

consider the case of Coulomb forces acting on the particle in addition to the 
potential U ( r ) .  The charge of the particle is e, and the charge at  the 
point r = 0 i s  e,. 

It is  a lso easily seen that expressions 

We thus see  that the case 1 # 0 differs from that of I 9 ( 1 = 0) only 
The physical interpretation and the 

We have so far worked with a neutral, uncharged particle. Let us  now 

The total potential seen by the particle is  now given by 

v ( r ) + w + F  for r<R,  

'F for r > ~ ,  

where q =  9.2, u is the velocity of the particle. Iv  
F o r  r > R ,  the Sch. Eq. has the form 

(10.7) 

(10.8) 

The properties of this equation have been studied in considerable detail. 
Its two independent solutions a r e  generally chosen a s  the so-called regular 

This behavior of the wave function for small  r is easily elucidated from equation (1.5), 
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and i r regular  Coulomb functions Fi (kr, q) and Gl (kr, q). 
functions give 

I I23 

123 

FI - sin Rr - + ql- q In 2k}, { 
- + qi- q In 2kr}, 

For  r -+  00 these 

(10.9) 

where ql = arg r ( 1  + 1 + iq). 
infinity a s  r-I: 

Fo r  r-0, Fl approaches zero a s  fl+1, and GI goes to 

(10.9') 

where 

In the following, w e  will use l inear combinations of the Coulomb functions: 

fi (kr-: f i r -  II In akr) xi:' (r) = GI f iFi- e (1 0.9l')  

These functions, by analogy with the functions (10.3) defined in the pre- 
ceding, describe outgoing and incoming particle fluxes ( u  particles through 
a sphere of large radius every second). 
compute the corresponding fluxes. 
can be  treated a s  constant, since on differentiation with respect to r it 
gives a contribution which vanishes for r + 00 faster by a factor of r than 
the principal te rm.  

r > R can be written by analogy with the previous treatment in the form 

This is  easily verified if we 
The t e rm with In 2kr in the exponential 

For  positive energies, the general solution of the Sch. Eq. in the region 

X U  ( r )  = Ai (k)  (d? (r)  - St&' ( r ) )  - 
nl - - 2 i 4  ( k )  e"'isin (k r  - 4 Y J  + 61 - tl In 2kr)  , 

si (k)  8'1. (1 0.1 0) 

If the potential U ( r )  identically vanishes, the solution (10.10) should hold 
t rue  in the entire space. In this case SI = 1 and 81= 0. Indeed, we know 
that only one of the Coulomb functions, F', i s  regular at  the origin. This 
means that (10.10) should not contain GJ, i.e., Si = 1. 

ing power of the potential U ( r ) .  
"Coulomb" part  separated: 

Fo r  nonzero U(r),  we have S&1 and (Ii is  a characterist ic of the scat ter-  
xkl is conveniently written with the pure 

x k i  ( r )  = Ai (A) {Xi;) - Xg) - (Sr - 1) X f i ) }  = 
(10.11) 

= Ai (k) {-2iF1 - (Si - 1)xZ;'). 

The last  t e rm in this expression is  entirely attributable to  scattering by the 
potential ( r )  and it vanishes when the potential is  zero.  
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§ 11. CONTINUUM WAVE FUNCTIONS. 
SCATTERING CROSS SECTION (NEUTRAL PARTICLES) 

We have so f a r  dealt only with particles with a definite angular momentum 
relative to the origin. In scattering problems, however, we a r e  dealing 
with a beam of particles propagating with a definite velocity in a definite 
direction in a scattering field U ( r ) .  
the following. :k 

a plane wave elhr 

The way to approach this problem is 

A linear beam of particles moving in the direction k is described by 
Indeed, the current corresponding to a plane wave is 

The angular momentum of these particles relative to the origin is undefined, 
since the probability density lelhrl* = 1 is constant throughout the space and 
in classical  t e r m s  any values of the impact parameter a r e  permissible for 
a given velocity. The fraction of states with different angular momenta I 
relative to the origin can be found from the expansion of a plane wave in 
spherical harmonics: 

(11.1) 

Here PI a r e  the Legendre polynomials, Ylo a r e  the spherical harmonics, 
and xi?) a r e  defined by (10.2). 

wave 
amplitude 

we see from this expansion that the incoming 
Xi;’ 

YIO with momentum I is contained in the plane wave with the 

(11.2) 

In classical  physics the angular momentum of a particle relative to some 
point r = 0 is t = [ rp] ,  and its projection on the direction of motion is zero. 
This theorem is valid in quantum mechanics also: the function YI,,, (e, 9) 
corresponds to a state with angular momentum 1 and projection m on the 
quantization axis  (i. e., on the direction of particle motion in the particular 
frame).  That d& is expanded only in te rms  of Y ~ o  actually signifies that 
the particle beam moving in the direction of k contains various angular 
momenta 1 relative to the point r = 0. but the projection of the angular 
momentum on the direction k is invariably zero. 

of a l inear beam should have the form 
Expression (1 1.2) implies that the wave function describing scattering 

(11.3) 

The general method of solution presented in this section was first applied by Faxen and Holtsmark /IS/; 
a particular case of scattering of sound w a v a  by an impenetrable sphere was treated by an analogous 
method by Rayleigh /16/. 
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Indeed, waves incident on the force center (i. e., the te rms  with x(- ) ) )  
clearly have the same amplitude a s  the wave propagating in free space; 
the amplitudes of the outgoing waves (i. e., the coefficients of x ( + ) ) .  however, 
acquire an additional phase factor SI = P5 due to the effect of the potential u (r) .  

wave separated: 
Expression (1 1.3) for is  conveniently written with the scattered 

(11.4) 1 ,fkr 
$k (r) = efkr+ ~ c I Y I O (  c) ( I  - SJ df)-efbr+ f (e) ; 

1 

here f (e) is the so-called scattering amplitude, 

(11.5) 

If the potential U ( r )  is identically zero, a l l  SI a r e  unity, f (e) = 0, and no 
scattering is observed. If the potential does not vanish, f (e) # 0. 

emerging from a large sphere through a surface element r* sin 0 de dv = ra d 9 .  

The scattered particles a r e  described by the te rm f (e )  k. 
ing particle flux is 

Let us calculate the current of particles scattered at  an angle 0 and 

i k r  
The correspond- 

j (0) d 0  = ~ l f  (e)(’dQ. 

The so-called scattering c ros s  section u (0) is introduced a s  a character-  
istic of the scattering power of the potential. It is defined a s  the flux of 
scattered particles within a solid angle d 9  produced by unit flux f 
(1 particle/cm2 .sec ) incident on the force center. The incident current 
is equal to v.  The scattering c ros s  section in a potential U ( r )  is thus given by 

u (e) m = 11 (e)lvdp. (11.6) 

Integration over all the angles gives the total scattering c ros s  section* 

(11.7) 
W ca 

o = a(e) d 0  = $ 2 (21 + I) I SI- 1 I’ = 2 (21 + I)sina61, 
I - 0  I=O 

s 
which is a sum of c ros s  sections for states with different 1 :  

The scattering c ros s  section a t  a given angle u (e) (the so-called differen- 
By (1 1.5) t ial  c ros s  section) cannot be presented in a similarly simple form. 

and (1 1.6) u (e) is  written a s  

In classical mechanics a = 00 if the potential U ( r )  does not vanish for r greater than some R.  A 
remarkable feature of quantum mechanics is that the cross section is finite for all potentials falling off 
faster than l/r. An essential difference between the classical and the quantum cross sections clearly 
becomes apparent for small-angle scattering. 
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5 11. SCATTERING CROSS SECTION (NEUTRAL PARTICLES) 

so that it contains interference te rms  YIoY*l,o between s ta tes  with different 
orbital momenta 1. 
integrate over all  the angles, a s  the spherical harmonics a r e  orthogonal. 

We use 
the following equality 

The interference t e rms  cancel out only when we 

The functions 98 (r) can be written in a very illustrative form. 

where n and n, a r e  any two unit vectors, and 6 (n - n,) is the 6 -function, 
Equality (11.9) is readily verified by multiplying both s ides  by YI,,, (nn,) and 
integrating over all the directions of one of the two vectors, say n: dn = 
= sin elielicp. 

Y I ~  (-nn,) = (-l)IYIo (nn,), we immediately obtain for large r 
From (1 1.1) and (1 1.4), making use of (1 1.9) and the known relation 

(1 1.1 0)  

k Here  n = T ;  n,=f. 

Expression (11.10) has an obvious meaning: the incoming particle beam 
has nonzero amplitude only for nl = -n, which corresponds to particles 
moving in the direction k toward the origin. The amplitude of the outgoing 
particles is divided into two parts:  unscattered particles which move away 
from the origin in the direction n, and particles scattered in all  directions 

which a r e  described by the t e rm g f ( n n l ) .  

To this end, we have to compute the integral 
We can now construct a complete orthonormal system of wave functions. 

i I 4 ,  5 $h (r) $kt (r) df = @n)* 2 
IC 

4s )/(21 + 1) (211 + 1) x 

Integration over the angles is elementary: 

Since the radial  functions a r e  normalized to 6 (k - itl), we obtain 

@&:, = (2xy -2 fm) YI0 (2) = (2n))"b (k - kl). (11.11) 
I 

i Thus, the set of functions 

an orthonormal system. 

= - $k for all  possible vectors k constitute (at)"' 
However, this system, in general, is not complete. 
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Indeed, besides the continuum states,  we may have the additional solutions 
i 

S n t m  (r) 7 Xnl ( r )  Y l m  (e, CP), 

Snlm (r) S.Lnl (r) dr = bnn,h,bmm,r 

for some discrete negative energy values Eni (or for  the corresponding 
imaginary wave vectors knl = ind);  these solutions describe bound states 
of a particle with orbital momentum 1 and projection rn in the potential 
U ( r ) .  Moreover, we know from the previous section that the continuum 
and the discrete-spectrum functions a r e  mutually orthogonal jqnrm (r)9; (r)dt= 
= 0. We also know that the functions 

Snrm(r) and $p)(r) (11.12) 

constitute a complete set  of Sch. Eq. functions which satisfy the conditions 
of boundedness and continuity in the entire space. 
orthonormal, so  that 

These functions a r e  

(1 1.1 3) 

Since the system is complete, any square-integrable function cp (r) (i. e., 
a function for which the integral over the square of the modulus i s  bounded) 
can be expanded in these functions: 

(1 1.14) 

whence, multiplying by I&,, ( f )  o r  9:). ( r )  and integrating over r, we readilyget 

(11.15) 

It is obvious that a complete system of functions can be selected in an 
infinite number of ways. 
say, the functions 

Indeed, as a complete system we may choose, 

o r  any linear combinations of these functions. 
functions 92) (r) a r e  indeed one of such combinations of q k l m  (f). 

The previously introduced 

In addition to qr) we sometimes use the functions 

9:' (r) ~y' (r) , (1 1.17) 
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These functions have the form 

~ = & x i l  ~ ~ ~ ~ ~ ( ~ ) e - ~ ~ I ( ~ ’ ~ ~ k ~ ( r ) .  (1 1.18) 

Their physical meaning i s  clearly understood from the asymptotic 
expression 

i kr e-ikr 
q!-’(r)- - [e‘*‘+ f’ ( - - 

( 2 n p  

We see that although the particles converge to the force center from all 
directions, the phase relations between the amplitudes of the incident 
waves with different 1 a r e  such that the scattered particles emerge only 
in the direction k ;  scattering thus converts a convergent incoming beam 
into a unidirectional beam. * 

Taking the complex conjugate of the formulas in the f i rs t  half of this 
section and changing the sign of k ,  w e  readily see that the functions 

qPnlrn (r)  and cp‘;) (r)  ( 1 1 .2 0) 

a r e  orthonormal and constitute a complete set  of solutions of the Sch. Eq. 
(1.2‘).  

The very interpretation of the functions qf) and Cpi-) gives a clue a s  to 
when to prefer  the system (11.12). when (11.16), and when (11.20). A 
state ~ ( r )  should be expanded in eigenfunctions (11.12) if we a r e  interested 
in the distribution (energy and direction) of the incident particles which 
correspond to the state cp (t). If we are interested in the distribution of 
particles over states with given 1, m, and R, w e  should use (11.16). 
Finally, i f  we want to find the distribution of directions and intensities 
for the outgoing particles, system (11.20) is the best. 

U (I) ,  and we inquire as to the number of particles with wave vector k 
emerging from the origin. This number is clearly determined by the 
square of the modulus of the corresponding coefficient 

Suppose that a state cp(r) has been created in some way in the potential 

i f  we  use an expansion in eigenfunctions (1 1.20). 
determined from an expansion in eigenfunctions (11.12), but the procedure 
would be more lengthy: f i rs t  we have to expand T ( r )  in 9:) and find the 
coefficients 

C(-) (k) can also be 

Note that the states $!+)and &)(often called the in and out states, respectively) reduce to the eigen- 

functions of the free Hamiltonian H o = ~ f o r f +  m. Thus, in our case the total Hamiltonian His  

naturally split into &and V. Scattering theory can be developed, however. without dividing the 
Hamiltonian into these two parts f l I / .  A rigorous theory of scattering is presented in /78/. 

Pa 
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and then compute CC-1 (k)  from the resulting expansion: 

In principle, this technique is in no way inferior to the previous one, but 
technically it is incomparably and unjustifiably more complicated. 

property of the eigenfunctions of the Sch. Eq. : 
We give one last  formula which is a consequence of the completeness 

2 $n im ( r )  $:lm (rl) + dk$F'(r)  $L*)* ( r l )  = 8 (r - t l ) .  (1 1.21) 
ntm 

S 12. 
GENERALIZATION 

THE OPTICAL THEOREM AND ITS 

As we have shown in the previous section, scattering 0, a particle in a 
potential field is described by a wave function 

$*(r)-eikr+ f (n,n')eikr/r ,  where n = k l k ,  n ' = r / r .  
r u a  

The f i rs t  term of this function describes the transmitted wave, and the 
second te rm is the scattered wave. 
expression seems to involve a paradox: the beam of particles passes 
by unimpeded and a certain additional beam is scattered. 
beam is thus created from nothing. How a r e  we to reconciliate this 
apparent paradox with particle number conservation or, equivalently, 
with probability conservation (i. e., unitarity) ? A correct answer to this 
problem is to be sought in the interference between the incident wave and 
the wave scattered at  an angle 0. This interference depletes the t rans-  
mitted beam. 
scattering, let u s  calculate the current j ( f )  corresponding to this wave 
function for r -+ m, 

Therefore, at  a f irst  glance, this 

The scattered 

To obtain a clearer  understanding of the mechanism of 

Retaining only the slowest te rms ,  we obtain 

Inserting this relation in expression (9.1) for the current,  we get 

Finally, using the identity 

we find 
rn 4x 8 (n - n') -1 = kn - kn Imf (n', n) + kn' A r' - 

52 

(12.1) 

(12.2) 

(12.3) 

(12.4) 



5 12. THE OPTICAL THEOREhl 

All the three t e r m s  in (12.4) have simple physical meaning: the f i rs t  t e rm 
describes the flux of incident particles; the second term, associated with 
the interference of incident and scattered waves, reduces the particle flux 
in the pr imary direction, i. e., causes beam attenuation by scattering; 
finally the las t  t e rm is simply the scattered beam. 

We now integrate the two sides of (12.4) over a large sphere of radius 
r = R and transform the surface integral in the left-hand side to an integral 
over the volume V enclosed within the sphere S :  

j jdS  = 1 div jdr. 
V 

(12.5) 

In stationary s ta tes  div j = 0, which follows, e.g., from the continuity 

equation div J + 3 = 0, since $= 0. Expression (12.5) thus takes the form 

The las t  t e rm in (12.6) is the scattering c ros s  section (I, so that 

k Imf(n ,  n) = 3 5 .  

(12.6) 

(12.7) 

We have derived the so-called "optical theorem", originally established 
by Feenberg / 7 9 / .  This important theorem relates the total c ros s  section 
to the imaginary part  of the forward scattering amplitude. 
the left-hand side of (12.7) is the result  of interference between the ampli- 
tudes of unscattered particles and particles scattered at an angle 9 = 0 to 
the incident beam. 
mechanical effect associated with the wave properties of particle motion. 

l inear combination 

A s  we have seen, 

In other words, the "optical theorem" is a quantum- 

The above analysis is equally applicable to the functions q h  ( r )  and to any 

* (4 = A (4 & "  (r) dn. (12.8) 

In this case,  the requirement that the integral over the flux should vanish 
for any A (n) leads to the following generalization of the optical theorem: 

Irnf(n, n') = z S d n " f ( n ,  k n")f'(n',n"). (12.9) 

The reader  will easily verify this identity. 
Let us  now consider another, more ingenious generalization of the 

"optical theorem'' recently proposed by Lippmann /SO/. 
This generalized "optical theorem'' is applicable not only to  the 

scattering of a single particle by a potential but also in a number of 
other cases .  We wi l l  therefore proceed with general treatment.  Let 
the Hamiltonian be H = H,, + H,, where H ,  is responsible for scattering. 
The wave function $(+), analogous to the previous I#(+) and satisfying the 
Sch. Eq. (E - H,,)g(f) = H&(+), has the form 

(12.10) 
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where the function @ is the solution of the equation No@ = E @  and is the 
analog of the incident wave; the functions @ constitute a complete system 181 I .  

Let 0. be an eigen- 
function of this operator, AQa = An@,,, and let  this function correspond to a 
function 9:). 

Consider any operator A which commutes with H,. 

i We now calculate the mean of the operator A = a [ A ,  H ]  in the state $:+I: 

Note that in general, this expression, unlike the analogous expression for 
the case of a discrete spectrum, does not vanish, since formally it i s  
equal to a difference of two expressions each of which is infinite and thus 
meaningless. 

in the form 
using the completeness property of the functions @ b ,  we write (12.11) 

where 

(12.12) 

determines the probability Wba of a transition from state (I to state b in 
unit time: 

(12.13) 2n 
w b a  = 3 I T b a  I* 6 ( E b  - Ea). 

Using the equality 

i 1 -= *--is p x  +in5(X) ,  

we transform the right-hand side of identity (12.12) to the form 

( 12.14) 2 2n 
Aa Im Taa + Ab I Tba 1' 6 (Eb - Ea). 

b 

If A is the unity operator, we obtain the ordinary "optical theorem'' 
(although written in a different notation): 

(12.15) 2n 
I IDl Taa + 2 I Tb.126(Eb- Ea)  =o. 

b 

Solving for Im T, and inserting in (12.14), we get 

This i s  the desired generalization of the "optical theorem". Expression 
(12.16) gives the probability of a change in A in unit time during scattering 
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(the right-hand side of the equality) as a function of the mean of a certain 
operator (the left-hand side of the equality). 

momentum operator d. Relation (12.16) now takes the form 
Consider another particular case. Let HI = V .  and for  A we choose the 

(sh", (- vv) sb") = (pb- pa) who. 
b 

We have thus obtained the theorem on the momentum t ransfer  in 
scattering, f i r s t  proved in 182 1. 

(12.17) 
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Chapter 3 

ANALYTICAL PROPERTIES OF THE WAVE FUNCTION 

§ 13. ANALYTICAL PROPERTIES O F  THE S-MATRIX 

In the preceding chapter we showed that the scattering of particles in 
a potential field is completely described by the phase factors Sr (k)  = 
= exp (2i& ( k ) ) .  

If we know the exact form of the particle interaction potential, analytical 
o r  numerical solution of the Schroedinger equation will provide complete 
information on the system. 
with free  conscience all the problems of quantum mechanics to electronic 
computers, and proceed with matters  of more importance. However, the 
actual physical reality i s  far  from this ideal state of things. In most cases ,  
the particle interaction potential is simply not known. Moreover, the actual 
interaction between particles is apparently not described by potential forces. 

Non-potential interactions a r e  the subject of what is called quantum 
field theory. 
This theory, however, unlike quantum mechanics, is not free from internal 
difficulties. For  example, calculation of certain quantities involves 
divergences (infinite, unbounded results) .  These divergences a r e  apparently 
associated with improper description of interaction a t  very small  distances. 

Heisenberg 1831 attributed these difficulties to the use of nonobservables, 
such a s  9 (r) ,  in the theory; a proper theory should dealonlywithobservables, 
which include the functions Sf  (k )  = exp (2i 61 (k)) forming the so-called S 
matrix (scattering matrix) 1841. 
developing in recent years ,  especially in connection with the description 
of strong interactions of elementary particles. 
devoted to the construction of S -matrix theory using unitarity and analyticity 
properties. 
S -matrix was f i rs t  emphasized by Kramers  1851 and Heisenberg {86/.) 
Numerous important advances were accomplished in this direction and 
various relations between experimental observables were established. 
Thus, the considerable progress  in the theory of elementary particles i s  
definitely attributed to ingenious application of the analytical properties 
of the S-matrix. 
other cases ,  the behavior of a system can be described without introducing 
a particular interaction: it suffices to apply only general considerations on 
the position of the poles of the scattering amplitude. 

The S -matrix formalism is generally regarded a s  precluding space - 
time description of processes.  
results 187, 881 give actual prescriptions for space-time separation of 

Had this always been the case,  we could leave 

(Simple problems of this kind a r e  considered in Chapter 8.) 

The theory of the S-matrix i s  rapidly 

Part icular  attention i s  

(Note that the importance of the analytical properties of the 

Moreover, in case of quasistationary s ta tes  and in some 

We should s t r e s s  at  this point that recent 
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events within the framework of the S-matrix formalism. 
of intensity correlations to the determination of the scattering amplitude 
phase was demonstrated in /89-91/. 

We will discuss the analytical properties of functions proceeding from 
the following general considerations: 

(a) all  the energy eigenvalues a r e  real (a Hermitian Hamiltonian); 
the wave vector R is thus automatically rea l  for continuum wave functions; 

(b) elastic scattering is the only allowed process; 
(c) the Hamiltonian is invariant under space inversion (when the space 

parity is conserved) and time reversal  (when time parity is conserved). 
Assumption (b) is needed so a s  to ensure that for given energy the radial 

Sch. Eq.  has only one solution with given 1.  Conservation of time parity is 
equivalent to the requirement of a real  Hamiltonian (H* = H); hence it follows 
directly that if  cp is a solution of the Sch. Eq.,  $*is also a solution. 

We should note at this point that the space parity definitely changes in 
so-called weak interactions, a s  was conclusively demonstrated in 1957 
J 9 2 ,  931; recent resul ts  a lso point to nonconservation of time parity 1941. 
Strong interactions, however, a r e  believed to this day to conserve space 
and time parity. The following theorems a r e  therefore fully applicable to 
strong interactions. 

We will now consider the general properties of the functions SI ( k )  
entering the scattering amplitude. * 

We have seen that for potentials U ( r )  which fall off at  infinity fas ter  
than 1 / r ,  the Sch. Eq. has two solutions XI$' which behave asymptotically as 

The applicability 

(the Coulomb potential case is not considered at  this stage). 

origin: *Q 
These functions can be formed into a solution which is regular at  the 

x ~ I  = 01 (k) &) (4 - bt (k )  ~ g '  ( r ) ,  (13.1) 

where a1 and bi a r e  some constants dependent only on k.  
clearly vanishes for r = 0 if  aI and bt satisfy the relation 

The function 

From the definition of Sl ( k )  we have 

(13.2) 

(13.3) 

Let us  consider the general invariance properties of the Sch. Eq. 
since it includes only the square ofthewave vector k ,  the equation is 

F i rs t ,  

* *  
A more detailed study of rhe analytical properties of wave functions and Si (k) will be found in /95-97/. 
This solution can be normalized using a k-independent condition, say limd'+''&(r)= 1. In this case, 

according to PoincarC's theorem /98/, xl (r)  is an entire function of k'. 
r 4  
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invariant under a change in the sign of k .  
solution (13.1), the new function will a lso be a solution of the original 
equation. As the solution is single-valued, however, the two solutions Xal 

and X-ti  may differ only by a constant factor. 
sion for  the function xi?) gives the relation 

Thus i f  k is replaced by - k in 

Since the asymptotic expres- 

(13.4) 

we find, changing the sign of k in (13.1), 

Expression (13.3) yields the relation 

SI (k)  = S;' (-k). (13.5) 

Still another important formula can be derived i f  we notice that a s  the 
Sch. Eq. is real,  the complex conjugate of any solution, ( r ) ,  is also a 
solution of the Sch. Eq. for real  k. 
conclude that X k I  and 
real  k 

As the solution is unique, we again 
may differ only by a constant factor, s o  that for 

(13.6) 

This expression signifies that the two functions SI  (k)  and (S' (k))' coincide 
over the entire real  axis in the complex k plane. According to the funda- 
mental theorem of analytical continuation it follows that 

SI (k)  = (S;(k*))-' (13.7) 

in the entire complex k plane. 
to-one correspondence between the SI  (k )  values in the different quadrants of 
the k plane (Figure 8): if the value of SI (4) at the point k, is So, we have 

The previous expressions establish a one- 

(13.8) 

It is thus sufficient to have the form of SI  (k)  in one of the quadrants so 
a s  to be able to reconstruct the function SI (k) for the entire complex plane. 
The above relations indicate that at  points symmetric about the imaginary 
axis, Sr (k) takes on complex conjugate values. On the imaginary axis, 
S I  (k)  is thus a real  function, and the phase 6, ( k )  i s  a pure imaginary number: 

(13.9) 

For points symmetric about the real  axis,  we have (13.7). 
the known result: on the rea l  axis IS, (k )  I = 1, and the phase 

Hence follows 
(k )  is real .  
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Let us  now consider the singularities of SI (k). The regular solution (13.1) 
can be considered over the entire complex k plane, provided that d?' are 

treated a s  the analytical continuations 

- x -  

FIGURE 8. 

of the corresponding functions for complex 
k. In particular,  the regular solution will 
have the same form (13.1) on the imaginary 
axis. Let the potential U ( r )  be such that a 
bound state of the particle exists for some 
negative energy - &(or  imaginary k, = 
= i l k o \ ) .  This means that the energy E, 
corresponds to a solution which is 
regular at the origin and falls off to 
zero as e'kr = e-lklr at infinity. 
is the only solution which is regular at 
the origin, the existence of a bound state 
implies that the coefficient al (k) vanishes 

0 
4 

4. 

Since Xkr  

for R = ko = i v q ;  the &) at this point is regular at  the origin. Similarly, 

a s  for all the k on the imaginary axis in the l o w e r  half plane (k = - i / & l )  

&)(r)+m for r+m,  &)(r)+O forr+oo,  

the existence of a bound state implies the vanishing of the coefficient br (k) 
a t  the point k = -&,,. This is a reflection of the previously mentioned 
general invariance property of the Sch. Eq. under sign reversal  of k. 
Returning to (13.3) we come to the conclusion that a bound state corresponds 
to a pole of the function St (k) situated on the imaginary axis  in the upper 
halfplane at  the point k = &. 

In accordance with the previously discussed symmetry properties of 
SI (k), this pole corresponds to a zero of the function S1 (k) at the point 
k = -& on the imaginary axis in the lower halfplane. Notice also that 
although a bound state corresponds to a pole, the converse is not always 
true: not to  every pole of SI (&) on the imaginary axis in the upper halfplane 
corresponds a bound state. There are so-called "false" or "redundant" 
poles of SI(&). 

It is readily seen that in the upper halfplane & (&) may have poles only 
on the imaginary axis, so that in the lower halfplane the zeros  also lie on 
the imaginary axis only. Indeed, apar t  from a common factor, the regular 
solution (13.1) can be written either as 

We will yet return to this  problem at a later stage. 

o r  as 

If SI (k) had a pole at  a point k = in the upper halfplane not on the imaginary 
axis, the solution (13.10l) would contain only the function &, which falls off 
exponentially at infinity : 
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But the function X k I  ( r )  i s  by definition regular at  the origin, and therefore 
a t  the point ko this solution would satisfy the two boundary conditions (1.7), 

i. e. ,  the complex quantity -& would be an eigenvalue of the Sch. Eq. This 

is impossible, since any physical potential is real  and all the energy eigen- 
values a r e  real .  

The requirement of a real  potential i s  thus responsible for  the concen- 
tration of the poles of SI ( k )  on the imaginary axis  in the upper halfplane. 
In the lower halfplane, however, no restriction i s  imposed on the position 
of the poles, and they may be distributed a t  random. 
remain in force even 'if the interaction forces a r e  not potential. The main 
thing is that the Hamiltonian should be Hermitian. 

the time-dependent Sch. Eq. and i t s  conjugate: 

Wk' 

These conclusions 

This theorem can be given an alternative, more formal proof. Consider 

The f i r s t  equation is multiplied by $*, the second by $, and one is subtracted 
from the other. We get 

Integration of this equation over an arbi t rary volume V enclosed within 
a surface S gives the law of particle number conservation: 

(13.11) 

Let now S (&) have a pole at some point k,, = 
a t  this point has the form 

+ iQ. The wave function 

Inserting this expression in (13.11), we choose the volume V a s  the inside 
of a sphere of radius r = R ,  where R is sufficiently large so  that on the 
surface of the sphere we may use the asymptotic expression for the wave 
function. Elementary manipulations give 

Since there is a minus sign in the right-hand side, this equality is satisfied 
only if  

(a)  4 = 0, i. e., the pole of S (k) l ies  on the imaginary axis, 
(b) kl # 0, 4 < 0, i. e., the pole of S (k)  lies in the lower halfplane. 
This completes the proof of the theorem. 
The only constraint on the position of the poles in the lower halfplane 

is that they should occur in pai rs  symmetrically about the imaginary 
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axis. * The zeros  of SI (k)  in the lower halfplane, however, may lie only along 
the imaginary axis. 

particles in the field U ( r ) .  
(at the origin) wave function has the asymptotic form 

This follows from (13.5). 
Poles in the upper halfplane correspond a s  a rule to bound states of 

For  poles in the lower halfplane the regular 

(13.12) 

i. e., it diverges at  infinity. 

infinity and would seem to be physically meaningless. 
so,  however. In Chapter 5 we will see that to every pole of SI (k) in the 
lower halfplane corresponds a so-called quasistationary state of the 
particle in the field U (r), i. e., a state which, once formed, will have a 
finite lifetime r. 

SI(&) in the complex plane. 
k plane, with the possible exception of isolated singularities and cuts. 
In the upper halfplane it may have poles on the imaginary axis only. 
of these poles correspond to bound states,  other a re  "false" poles. 
the next section we will give a prescription for identifying the "false" poles. 
Sl(k)  may have zeros  in the upper halfplane and corresponding poles in 
the lower halfplane. On the imaginary axis &(k) is real  and on the real  
axis i ts  modulus is equal to unity. 
energy, we should remember that the k plane i s  mapped onto a two-sheet 
E plane. 
upper E plane. 
to quasistationary states. 

phases. On the real axis the phase 6 is real .  
for real  k 

This wave function thus does not satisfy the boundary condition a t  
This is not quite 

Let us sum up what we have learned on the topography of the function 
This function is analytical in the entire complex 

Some 
In 

If the wave vector k is replaced by 

Bound states correspond to poles on the left semiaxis in the 
The poles on the lower sheet of the E plane correspond 

In what follows we will require the symmetry properties of scattering 
By (13.5) we see that 

6~ (k) - 61 (- k). (13.13) 

Wave functions normalized to 8 (k - R') have the asymptotic expression 

Using this expression, we can readily verify that as the sign of k changes, 
the wave functions behave in the following way: 

%k, I (r)  E (- 1)'"X-k. I (r). (13.14) 

We have mentioned in the preceding that SI (k) is an analytic function in 
the complex k plane. This holds true for any potential and is a consequence 

For potentials vanishing for r>R there is an infinity of such poles /99-101/; in this case the distribution 
of the distant poles is completely determined by the behavior of the potential for r - R .  The poles 
in case of a rectangular box were treated in detail in /102/. 
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of the principle of physical causality. ::: In other words, the cause must 
precede the effect. 
and it is found to have very far-reaching consequences. 
to  sketch a rough outline of the formal results emerging from the causality 
principle. 

some distance r = a outside the effective range of the potential: 

This is an inevitable prerequisite of any physical theory, 
We will now t ry  

We write the expression for the wave function for given energy E a t  

The f i rs t  t e rm corresponds to the incoming wave and the second to  the 
outgoing wave, A spatially localized wave packet is given by 

IE’t 1 dE’ (f (E’)  e-ik’a - g (E’) eik’a) e- g (E’) = S (E’) f (E‘). (13.15) 

The wave packet describing the incoming waves is clearly 

e-ik’a- iq , 

and the wave packet of the outgoing waves is 

1k.a- iE‘t 
f . m 

mOut (a, t )  = 1 dE‘g (E’) e 
0 

Since the system is linear and the amplitude of the divergent outgoing 
waves is fully determined by the incident wave, we have the following 
relation between the two amplitudes: 

Qout (a, t )  = 3 H (t - t’) (Din (a, t’) dt’, 
--OD 

( 13.16) 

where H is some transformation kernel. 

of the outgoing wave a t  the t ime t can depend on Oin (t’) only if t > 1‘. 
must therefore have 

It is here that the causality principle enters  the discussion: the amplitude 
We 

H (t - t’) = 0 for t’ > t .  (13.17) 

Introducing the Fourier component h (0) of the operator H, 

H (7) = docior  h (o), 
-Q1 

we easily find from (13.15) -(13.18) that 

(13.18) 

h ( E )  = zeaikaS(E). 1 (13.19) 

This idea was f i a t  advanced in /103/, but the original proof is not fully rigorous. The rigorous proof 
first given by Van  Kampen /104/ requires knowledge of comparatively fine theorems of the theory of 
analytic functions. 
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Inverting (13.18), we get 

m 

eska S (E)  = + 5 ti (7) dT. 
-QJ 

In the general case,  this expression sheds n o  light on the properties of 
S ( E ) .  By the causality principle, however (see (13,17)), we know that 
H (7) = 0 for z < 0. The integration should therefore s ta r t  from zero: 

m 

e""'S (E)  = + 5 elE' H (T) d.r. 
0 

(13.20) 

In this case the function in the right-hand side is clearly analytical in the 
upper E halfplane, where eiET decays exponentially. In the k plane this 
corresponds to the first  quadrant. Thus, using the symmetry properties 
of S (&), we find that S (&) is analytic in all  the quadrants. The exponential 
factor k k a  in (13.20) accounts for the phase lead of the wave reflected from 
the spherical surface r = a relative to the wave passing through the scat ter-  
ing center 11051 (the corresponding path length difference is 2a).  

shortest path (corresponding to maximum phase lead) through the scattering 
For  a plane wave scattered at  a finite angle e we should choose the 

sphere which reaches the observer 
a t  an angle 0 (Figure 9). This path 

length is less by Pasin: than the 

length of the path through the 
scattering center. Therefore, in 
the upper E halfplane. it is the 

function e 
and not the scattering amplitude 
f (E,  8). Hence it is clear that the 
simplest analytical properties are 
characteristic of f (E,  0) (it is analytic 
in the upper E halfplane). 

The causality principle can be 
applied to derive the analyticity 
properties of the scattering amplitude 
from momentum transfer  / 106 1. 

%h 8 h  b * f (E.9) that is analytic, 

Note that the validity of our assertions on analyticity is independent of the 
particular form of the potential for r < a. 
that the wave function inside the interaction range ( r  < a )  satisfies the 
Sch. Eq. is unnecessary. In other words, the analyticity of S (E)  in the 
upper E halfplane is a direct  consequence of the causality principle alone. 
This problem is discussed in / 107, 108 1. 

Moreover, even the assumption 

FIGURE 9. 

S 14. "FALSE" POLES 

We have already mentioned that in the upper halfplane &(k) may have 
so-called "false" poles* on the imaginary axis, which do not correspond to 

The existence of these poles was f i s t  pointed out by Ma /log/ [who called them "redundant"]. 
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physical bound states. 
we recall  the definition of SI (k ) :  we started with two independent solutions 

of the Sch. Eq. x$) and xi;) with asymptotic behavior xi?) - e  
large r ;  since we a r e  dealing with scattering problems, the asymptotics is 
computed for positive k .  
solution which is regular a t  the origin, 

The nature of the "false" poles can be understood if 

for *f (htr -f) 

Then these two functions a r e  formed into a 

X k l  ( r )  = xi;) - SI (4 x',:'. 

For  this function to vanish a t  r = 0 it is necessary and sufficient that &(k) 
have the form (13.2). 
denominator of (13.2) (xj$) (0)) vanishes correspond to bound states. These 
points lie on the imaginary axis in the upper halfplane. 
of this kind, &(k)  may have poles associated with the poles of the function 
Xi;)  ( r ) .  
a function of k is identically infinite for all  r .  
correspond to any bound states.  

The points in the upper R halfplane where the 

In addition to poles 

By this we mean those points of the complex R plane where y&) as 
These points, clearly do not 

r 

Consider the particular case of a potential V ( r )  The Sch. Eq. 

(14.1) 

r 
and substitution of a new variable y = 2a fl&y reduces it to Bessel 's  
equation 

(14.2) 

where p = 2ka. As two independent solutions of this equation we may take 
Bessel 's  functions J f p  Q and JAP Q, defined in the usual way: 

(14.3) 

Using this expansion, we easily find the asymptotic form of the functions 
J*lP (y) for r+Oc (i. e., when y- 0) 

We can thus define the functions (r): 

Using definition (13.2). we find 

(14.4) 

(14.5) 

(14.6) 

The case of attraction corresponds to  positive values of V,, i. e., the 
argument yo of Bessel 's  functions is a positive number. For  r ea l  k, by 
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definition, 8 (&)is also real  and we clearly have IS (&)I = 1. On the positive 
imaginary axis ip  = - i2ak = +2u)kl and S (k) has poles at the points k,, where 

J1Mnla (20 VZ) = 0 .  (14.7) 

These poles clearly correspond to bound states, since the wave function 

satisfies the two boundary conditions a t  these points. 
In addition to poles of this kind, S (&) also has poles a t  the points 

l + i p = 1 - ! 2 ~ 1 & ~ 1  = - m  (m=O,1 ,2 ,3 ,4  , . . .  ), 

where r (1 4- i p )  goes to infinity. This infinite sequence of poles does not 
correspond to any bound states, and they a r e  thus "false" and "redundant1'. 
verifythis,  we write theexpression for the wave function. Using( 14.5), we find 

To 

(14.8) 

At the points k = k, the factor r (1 + ip )  goes to  infinity. 
brackets m (14.8), however, vanishes on account of the well known property 
of Bessel 's  functions J4 (y) = (-l)V&), where I is an integer. 

The expression in 

Using the expression for Bessel's function with negative index, 

J ,  (y) = cos nvJ, Q - sin nvN, (g) , 

where N, (y) is Neumann's function, we obtain without difficulty 

This solution is regular at  the origin, but for r 4 #I it increases exponen- 
tially, &m (t) - &ar for t 
bound state. 

"false" poles. We already know that they a r e  associated with the pole of 
the function xi-). 
which for large r behaves on the real  k axis as bkr. If, however, xi-) is 
infinite somewhere in the complex k plane, the asymptotic expression - 6'Lr breaks down when we move from the rea l  axis into the complex 
plane, since e " r  is bounded for all k, except k = i m .  The asymptotic form 
of this function is not conserved if the exact expression for this function, 
besides the t e rm &kr, also contains other t e r m s  which, though safely 
ignorable on the rea l  axis, a r e  not so in the entire complex plane. 

have the form 

00, and therefore does not correspond to any 

Let us  now t ry  to elucidate the general reasons for the formation of 

The function xi-) is defined as that solution of the Sch. Eq. 

In the case under discussion (an exponential potential), these t e rms  

(14.10) 
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On the rea l  axis, for sufficiently large r ,  the second te rm in (14.10) is 
always ignorable. On passing to the complex plane, the situation is 
essentially altered by the poles of the gamma function on the negative 
semiaxis. At the poles the second t e rm in (14.10) i s  dominant compared to 

unity, despite the smallness of the exponential t e rms  e - 7 .  

We can now answer the question, when do the "false" poles form? 
Indeed, we see from the preceding, that a sufficient condition for the 
absence of "false" poles is the applicability of the asymptotic expression 
x1-)-e-Ihr in the entire halfplane, since in this case xi-) has no poles. 
Hence it follows directly that i f  the potential 1.' ( r )  is identically zero 
outside a sphere of any arbitrari ly large radius R ,  there a re  no "false" 
poles. * The point is that in this case for r > R the function Xi- )  (l ike $)) 
is a superposition of Bessel 's  functions for which the validity of the 
asymptotic expressions in the entire complex plane is proved without 
difficulty (e. g., using expression (14.3) which is valid everywhere). 
Thus, 
This is readily checked for our example of an exponential potential by 
cutting it off for some r = R .  
a r e  virtually unaffected, whereas the "false" poles disappear. 

is cut off, al l  physically meaningless "false'' poles disappear, whereas the 
"physical" poles corresponding to bound states a r e  virtually unaffected. 
The la t ter  point is quite understandable. 
where far away, where it is small ,  this can hardly al ter  the physical 
properties of the system, in particular the energy and the wave functions 
of the bound states. A situation of this kind, when some sort  of a cutoff 
essentially simplifies the analytical properties of functions without affecting 
their  physical meaning, is often encountered in modern theoretical physics. 
The example of "false1' poles is probably the simplest in this respect a s  fa r  
as mathematics is concerned. 

The above considerations suggest the following prescription for the 
calculation of the energy of bound states in case of potentials which do not 
vanish identically a t  infinity: the potential should be cut off a t  some r = R ,  
the position of the poles of SI (k) in the upper k halfplane should be found, 
and R should then be allowed to go to  infinity; the l imits k, ( R ) I R + ~  give the 
energy of the bound states. 

the problem of reconstruction of the potential U ( r )  from the scattering 
phase 81 (k), e. g., the s -phase bo (k). In distinction from the case of 
classical mechanics, where scattering data completely determine the 
potential U ( r )  / l l O / ,  the solution of this problem in quantum mechanics is 
not single -valued. 
and even families of potentials which all  produce the same expression for 
the scattering phase 6&). 
to different subdivisions of all the poles of So(&) = #Wk) into "true" and 
"false". 
a r e  treated in / 1 1 2 /  (see also /113/). It is remarkable that for some 
potentials /114/ the phase &(&)GO, i.e., no s-state scattering is observed 
for all R .  

m, 

has no poles anywhere in this case, and no ''false'' poles form. 

All the poles corresponding to bound states 

We thus come to the following remarkable conclusion: when a potential 

If we cut off the potential some- 

The problem of the "false" poles of the S-matrix is closely related to 

Bargmann / 11 1 / gave examples of various potentials 

Different potentials U ( r )  in general correspond 

This property, and some other properties of Bargmann potentials, 

It can also be shown /lOy that "false" pole, are abrent for potentials which fall off at infinity faster 
than any exponential e+'. 
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The determination of potential f rom scattering phases was  completely 
solved by Gel'fand and Levitan /115/ and by Marchenko /116 ,  117/, who 
showed that for single-valued recovery of the potential, the scattering 
phases should be supplemented by the energies of the bound states and the 
coefficients A, which specify the asymptotic behavior of the corresponding 
wave functions for large I :  

15. PROPERTIES O F  RESIDUES O F  Si(&) 

n w  Consider a bound state of momentum 1 and binding energy Eo = =. 
The wave function of this state is assumed to be normalized: 

We f i rs t  consider the case when for r +  00 the potential U ( r )  falls off faster 
than 11 r .  Then X I  behaves for large r as 

X I  - A l p ' ,  (15.1) 

where AI is a constant determined by the form of the potential. 
As we know, SI(&) has a pole at the point k = ix: 

(15.2) 

A universal relationship can be established between Cl - the residue of 
Sl a t  the pole - and the constant AI entering the asymptotic expression for 
the normalized wave h c t i o n  of the bound s ta te ,  * 

Cd = (-l)l+1 I I AI I '. (15.3) 

Making use of this relation, one can reach certain conclusions concerning 
the properties of the bound state from the behavior of scattering phases. 
In field theories analogous relations are used to determine the coupling 
con stant s . 

We can now proceed with the proof of (15.3). 
regular at  the origin and behaves asymptotically as  

The solution which is 

This relation was first derived by Heisenberg /E3/ and Moller /118h also see  /llS/. 
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should coincide, apart  from a constant factor,  with the function Xl of the 
bound state for k = i x .  We normalize X k l  so that this factor is unity: 

lim xkl = xI .  
k- In 

This condition clearly corresponds to the normalization 

xkI = AI ( efkr - (<:)' - e-fkr). (15.4) 

Consider an infinitesimal neighborhood of the pole: 

k =  i x + e ,  a + 0 ,  e > 0 ,  

(15.4') 

We will use the law of particle number conservation which is readily seen 
to apply to both real  and complex k :  

(15.5) 

Firs t  consider the left-hand side of (15.5). 
number in our case: 

The energy E is a complex 

so that 

(15.6) 

Here the radius R is taken sufficiently large to justify using the asymptotic 
expression (15.1) for the wave function. 

a pure imaginary quantity: 
Now consider the right-hand side of (15.5). The residue CI is clearly 

c; = - c,. 

This follows from the fact that 6, is real  for all  imaginary k (see S 13). 
Using this fact and inserting (15.4') in the right-hand side of (15.5), we 
obtain to te rms  l inear in e 

Comparison with (15.6) yields 

Cl= (- 1)"'f I dl r, 
which completes the proof. 
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Relation (15.3) can be generalized to the case of a potential with a 

Coulomb tail, U ( r )  - - $ for r+ca /l20/. 

the wave function in this case is 

The asymptotic expression for 

and relation (15.3) takes the form 

This theorem makes it possible to establish the upper bound for  the 
absolute value of the residues Cl. 
potential U (r) has a finite range R ;  in this case for  r > R the wave function 
of the bound state must have the form of the free-motion wave function 

Indeed, suppose that we know that the 

x,(r)  = A1krhr ' (kr)  = Ali l+fdV,y(l) (i I knl Ir)-  A,,,e-lknllr. (15.7) 
I+ 

The normalizing constant AI  clearly depends on the form of the potential 
U ( r ) .  We rewrite the normalization condition in the form 

(15.7') 

All the t e rms  in the right-hand side a r e  positive. We therefore obtain the 
inequality 

For 1 = 0 and 1 = 1 we thus obtain* 

(15.9) 

(15.9') 

The upper bound for IAll' and correspondingly for C; is thus determined 
by the range I? of the potential, the energy of the bound state, and the 
particle mass  m. 

In the limit for R --* 0, (15.9) takes the form 

IAop<2x  and IA,I'<O. (15.10) 

lA l l  ' is of course nonnegative. Therefore, the above inequality implies that 
a potential with a range R --+ 0 precludes existence of bound states with 1 =/= 0. 
The inequality for A. in the case of a Sch. Eq. with singular potential 
reduces to equality, since the wave function of the bound state has  the 

These inequalities were derived in /121/. 
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form A r X r  in the entire space and the f i r s t  t e rm in (15.8) identically 
vanishes, so that 

[Ao['  = 2 1% I .  
If the range R of the potential is finite, 1 A, I* is strictly less  than W R .  

This fact can be used in estimating the range of the potential from scattering 
data. Indeed, given the scattering phase for real k ,  we can extrapolate the 
function eZf8 for imaginary k .  This will give the residue G, and thus IA 1 % .  
If we find that IA, (I < 21% 1. a point potential is possible; i f ,  however, 
I A, 1' > 2 I x 1, the potential has a finite range. 

in the triplet state. 
momentum is given by 11221 

Consider, for example, the interaction between a neutron and a proton 
The scattering phase for  a state with zero orbital 

(15.11) i kcotd=- --+Ir,#, a 2  

where a is the scattering length ( a  = 5.4 
the so-called effective radius. 
and the proton possess a bound state (a deuton) with binding energy e = 
= 2 . 2 M e V .  
a t  k = k, = i I k,, I, which corresponds to a bound state: 

cm), and r,, = 2 -10-13cm is 
In the case under discussion, the neutron 

Using (15.11), we obtain the following expansion near  the pole 

(15.12) 

Hence we find (see (15.3)) that the normalizing constant of the bound 
wave function is 

state 

15.13) 

and expression (15.9) gives the following inequality for the interaction 
range R :  

e % 1 4 1 R  4 (15.14) > - - Io1 h I *  

Inserting numerical values for I k,, I and r,, we finally obtain R > 1.35 .l(J-13cm. 

In what follows we will prove the following s t r ic t  inequality:* 
The interaction range R can be estimated by an alternative technique. 

;ii; ds + R -  a f sin(2kR + 2a) >O. (1 5.15) 

Inserting the phase 8 from (15.11) and taking the limit k+ 0,  we see that 
(15.15) reduces to 

R [  1 -: + 3 4 (a) R a  I>+. (15.16) 

' This inequality was first obtained by Wigner /123/ proceeding only from the causality principle. 
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we now proceed to prove (15.15). The Sch. Eq. for two close energy 
values E and E, a r e  

2m x ; - ~ ( U - - ) X & = O ,  

x;, -+ (U - El) X E ,  = 0. 

Multiplying the first  equation by X E , ,  the second by %E, and subtracting one 
from the other, we obtain 

I 

Integrating this equality over r from 0 to R and taking the limit a s  E, + E, 
we find 

(15.17) 

Since for  r = R the potential is zero. the wave functions x can be expressed 
in the form 

Inserting this expression in (15.17) we obtain after elementary manipula- 
tions 11241 

R s x; dr = f {( R + 2) - sin 2 (kR -t &)I. (15.18) 
0 

The left-hand side is a pr ior i  positive. 
positive, so that inequality (15.15) applies. 

the Sch. Eq. with a potential. 
with a system of particles capable of mutual transformations. 
problem is discussed in more detail in Chapter 8. 

The right-hand side is thus also 

In conclusion of this section note that the above results apply only to 
They should be modified if  w e  are dealing 

This 

§ 16. DISPERSION RELATIONS 

We will now consider a few examples when the general analyticity 
properties of &(&) give useful relations for the wave function. 

We have already mentioned that SI(&) a r e  analytic functions of k whose 
poles in the upper halfplane are concentrated on the imaginary axis only. 
Some of these poles correspond to bound states,  but there are also some 
redundant poles. 

N e a r  the n-th pole 

(16.1) 
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We also know that in the lower halfplane the poles occur inpairs.  symmetri-  
cally about the imaginary axis; each pair  corresponds to a so-called quasi- 
stationary state. Moreover, poles may also lie on the imaginary axis in 
the lower halfplane. 
Each of these poles corresponds to a zero  of S l ( k )  in the upper halfplane. 
N e a r  each of these zeros 

These poles correspond to the so-called virtual states.  

(16.2) 

Let us first  consider the case of an S-matrix with a finite number of 
poles. Consider Nb bound states, N r  redundant poles, N ,  quasistastationary 
states, and N ,  virtual states. 
points where (16.1) i s  satisfied and (2N, + N,) points where (16.2) is satisfied. 

In the upper halfplane there a r e  thus (Nb -k Nr) 

Everywhere else &(k)  is bounded. Consider the integral 

m m 

I = 2i 5 6; ( k )  dk = 4i 1 6; (k )  dk = 4i ( b ,  (w) - bi (0)). 
--w 0 

For I k I -f 00, Sl (k )  -+ 1 + 7 ; p = const ( see  Chapter 4) .  

the phase 61(k)  -f prr + P/k ,  where p is an integer and &(k)  - k - 2 .  
therefore complete the integration contour in the upper halfplane and 
calculate the integral, as all the poles and their residues in the upper 
halfplane a r e  known: 

This means that 

We can 

I = 2ni (2N, 4- N ,  - Nb - N r ) .  

Equating the two expressions for  I ,  we obtain a relation between the phase 
a t  infinity and the number of bound and quasistationary states (we take 
61 (0) = 0) 

bi (m) - dl (0) = 61 (m) = $- (2N,  + N, - Nb - A',). (16.3) 

In the general case, e. g., for a potential which vanishes for r > R ,  
there is an infinite number of poles. 
other hand, is mostly finite. The above reasoning breaks down in this case, 
since the integral over the upper semicircle is no longer ignorable. Never- 
theless, Levinson /126/ showed that in this case also one can derive an 
expression relating the phase a t  infinity to the number of bound states: 

The number of bound states, on the 

b , ( m )  - 61 (0) = - rcNb. 

We will now prove this important relation. 

(16.4) 

Consider the function 

Dl(k) =&'(O), D ; ( k )  = ( - l ) ' D l ( - k ) .  (16.5) 

DI(k)  is analytic in the upper k halfplane; on the imaginary axis it has 
zeros  corresponding to bound states. 
in the form 

By (13.2) and (13.3) SI can be written 

(16.6) 
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As before, consider the integral 

Expressing SI in te rms  of DI and completing the contour in the upper half- 
plane, we obtain 

Comparison of the two expressions for I gives (16.4).  

number of poles is finite. 
This proof of Levinson's theorem* is clearly applicable a lso if the total 

Comparison of (16.3) and (16.4) gives in this case 

N, = Nb+ N ,  + 2N,. (16.7) 

We thus established the following remarkable fact: for potentials giving 
r i se  to a finite number of poles in the S-matrix.  the number of redundant 
poles is completely determined by the number of bound, virtual, and 
quasistationary states.  
Nb = N ,  = 0) thus leads to a single redundant pole and corresponds to the 

"effective range approximation" 1112, 132 / ( k  cot a = - ;i- + Tr&a for ro>O) .  

relations for S&). 
k halfplane. 

The simplest case Nb = 1, N ,  = N, = 0 (N, = 1, 

i t  

We can now proceed with the derivation of the general dispersion 
We know that Sa (k)  = eDiiOaS ( k )  is analytic in the upper 

Consider the integral 

( 1 6 . 8 )  

where z is some point in the f i rs t  quadrant of the k plane. Completing 
the contour in the upper halfplane and noting that integration along the 
semicircle gives a zero  contribution, we can write that this integral is 
equal to 

2ni X(  sum of residues in the upper halfplane) = 

Here the f i r s t  t e rm corresponds to the pole at  k = z and the sum cor re -  
sponds to bound s ta tes .  Let now the imaginary part of z approach zero,  
so  that z approaches a point z, on the real  axis (Figure 10). Clearly 

Another fairly simple derivation of Levinson's theorem can be found in /127/. Note that this theorem 
can be extended IO a more general class of Hamiltonians /120/. A generalization of Levinson's theorem 
was derived in /129, 130/. Finally, in /131/ this theorem was proved for the relativistic case. 
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where p signifies that the integral is to be taken in the sense of i ts  principal 
value. 
limit z-*z , ,  we finally obtain /104/ 

Equating this expression to (16.9). where we should also take the 

Res sa (k,) - 
Using (15.3) we write this so-called dispersion relation for ga (zo) in the form 

(1 6.10) 

where A,, is the coefficient before e-"nIr in the normalized wave function of 
the bound state. The sum, a s  is clear  from the derivation, is extended over 
all  the bound states which exist for the given orbital momentum value. 

FIGURE 10. 

Having derived expression (16.10), we can write without much difficulty 
Yka 81.8 

an analogous expression for fa (k, e) = e 
amplitude, 

a f(k, e), where f is the scattering 

W 

This dispersion relation has the form 

Here  the sum in the second t e rm is taken over a l l  the bound states of the 
system: over all  values of the orbital momentum 1 for which bound states 
exist and over all  states (the index n )  for fixed 1.  

The above formula can be rewritten in a somewhat different form if 
we use the relation 

fa  ( 4  e) = (k 0). 
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Then (16.7) takes the form 

(16.12) 

The advantages of this expression a r e  that the integration is carr ied out 
only over the physically meaningful positive values of the wave vector. 

Dispersion relations which follow from the analyticity of SI (&) in the 
upper halfplane impose fairly rigid constraints on the energy dependence 
of these functions and on the energy dependence of the scattering amplitude. 
In particular,  a s  we see from (16.12), they permit reconstructing the real  
(imaginary) part  of fa if we know its imaginary (real) part  and the position 
and the coefficients A,I of all  the bound states. The dispersion relation for 
zero  angle 8 = 0 is of particular importance, since in this case the depend- 
ence on the interaction range drops out and the amplitude f (&, 0) can be 
expressed entirely in t e rms  of experimentally observed quantities. 
prove this point, we return to  the optical theorem of the previous chapter 

To 

k Irn f ( k ,  0) = =IS ( k ) ,  

where u (&) is the total c ros s  section. 
dispersion relation (16.12) for 8 = 0, the real part  of f (k, 0) can be written 
in the form 

Using the optical theorem and 

This relation expresses the amplitude f (k, 0) in terms of experimentally 
observed quantities: 

f(k, 0) = Ref(&, 0) + i & ( k ) ,  (16.14) 

where the real part  is given by (16.13). 

scattering. However, analogous relations can be obtained for much more 
general  assumptions concerning the particle interaction. Dispersion 
relations have a multitude of uses;  for example, one of the main problems 
of nuclear physics and elementary particle physics is experimental deter - 
mination of scattering phases, a s  they yield valuable information on the 
nature of particle interaction. 
the phases 6I (k) from experimental c ros s  section data for a fixed k), 
however, is not a single-valued procedure. This is particularly evident 
for the case of spinless particles: the c ros s  section u (e, k) is readily seen 
to remain constant when the sign of all the phases is changed. 
that if we have found a range of phases which give a good fit between the 
theoretical and the experimental c ros s  section u (8, k ) ,  the same fit can be 
obtained by changing the sign of all the phases. There is absolutely no 
possibility to determine the t rue sign of the phases 61 (k) from the c ros s  
section u (e, k) a t  the same energy. 

Relations (16.10) -(16.14) were derived for the simplest case of potential 

Phase analysis (i. e., determination of 

This means 

This ambiguity is  resolved only by 
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using the dispersion relation ( 1 6 . 1 3 )  which defines f ( k ,  0) and thus gives 
the correct  sign of the phases i f  the total c r o s s  section (I (k)  is known fo r  
all k and the parameters of the bound states are also given. 

only used the analyticity of SI (k)  in the upper halfplane. 
made concerning the field acting on the particle. 
The point is that irrespective of the actual potentials, any physical theory 
should satisfy the causality principle. 
to the analyticity of SI (k)  in the upper halfplane and thus ensures the existence 
of dispersion relations. Q 

convergence of the integrals a t  the upper limit. 
in ( 1 6 . 1 3 )  converges only i f  the total c ros s  section for large k decreases 
faster than l l k ,  and this is not always so. 
dealing with dispersion relations not for amplitudes but for some functions 
with better convergence. Good convergence is ensured, say, by the ratio 

or by the difference f ( k ,  0) - f (k ,  0) , where fbr, (k ,  0) is the 
(k + 4" 
amplitude computed in the Born approximation. 
chapter show that this approximation is quite adequate for k -  00, so  that 
the last difference rapidly converges for large k .  

In conclusion note that in the derivation of the dispersion relations we 

This is not accidental. 
No assumptions were 

This leads, a s  we have shown in § 1 3 ,  

In deriving the dispersion relations, we always have to consider the 
For example, the integral 

Therefore we a r e  generally 

The results of the next 

9 This problem is treated in some detail in /104--106/. 
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Chapter 4 

GREEN'S FUNCTION AND PERTURBATION THEORY 

§ 17. INTRODUCTION. GREEN'S FUNCTION 
O F  THE RADIAL SCHROEDINGER EQUATION 

We have so far  dealt only with the homogeneous Sch. Eq. In some 
problems, however, we have to solve the inhomogeneous Sch. Eq. 
very important c lasses  of problems a re  in fact reduced to inhomogeneous 
equations. 

F i r s t ,  these a r e  the problems of perturbation theory, when we a re  
looking for corrections to the wave function associated with small  perturba- 
tions of the system Hamiltonian. The inhomogeneous t e rm in the Sch. Eq. 
is proportional to the unperturbed wave function. 
problems associated with reactions, i. e., with particle creation. Inhomo- 
geneity in these problems plays the part  of a source (or  a sink) of new 
particles. 

Handling of inhomogeneous equations requires thorough knowledge of 
the apparatus of Green's functions. Note that this apparatus is also 
applicable to the solution of equations which a r e  much more involved than 
the Sch. Eq. (e.g., the equations of quantum field theory), and it is 
currently used on a very large scale almost in all subdivisions of theoretical 
physics. 

The simplest 
of these is Green's function of the radial Sch. Eq., which is discussed in 
S 17. In S 18 and s 19 we consider some properties of Green's function 
of the three-dimensional Sch. Eq. In § 20 an expression is given for 
Green's function of several free particles. 
of perturbation theory. In fi 21 and $i 22 we consider the application of 
perturbation theory in the coordinate and momentum representation. 
next section gives simple examples illustrating when the perturbation theory 
is inapplicable and the entire perturbation-theoretical s e r i e s  must 
be summed. 

the structure of perturbation theoretical se r ies ,  is derived for some 
particular simple cases  in 
investigates the properties of the time -dependent Green's function. 

Two 

Second, these a r e  

We will only consider Green's functions of the Sch. Eq. 

Then we pass  on to a discussion 

The 

The Feynman diagram technique, which presents a graphic picture of 

24 .  The last  section ( §  25) of this chapter 

The inhomogeneous Sch. Eq. is written in the form 

n' Q ( -  2 ; ; ; - A + U - E ) $ = - T T '  
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Ch.4. GREEN'S FUNCTION AND PERTURBATION THEORY 

Here Q is a function, called the source function o r  simply the source. 
The wave function rp of this equation is subject to the usual conditions of 
single -valuedness and boundedness. 

For  a function satisfying (17 .l) the probability density, in general, 
is not conservative. Indeed, the time-dependent equation equivalent to 
(17.1) has the form 

We thus get in the usual way 

i E f  - - n  Separating the time, 9 (r ,  f )  = $ (r) e 
case the flux through a sphere of large radius does not vanish: 

, we find that even in the stationary 

Q is thus interpreted a s  a source or a s i n k  of particles.  

The Green's function of the equation 
Equation (17.1) will be solved using the apparatus of Green's functions. 

is by definition a symmetric function of two variables GI ( r ,  r') which satisfies 
the equation 

LrGk ( f ,  f ' )  = 6 ( r  - f'). (17.3) 

The usefulness of this function is obvious. Indeed, using this function, 
we write the general solution of the inhomogeneous equation L,cp = Q in 
the form 

m 

V k  (f) = X k  ( r )  + 5 &' Gk (r, r') Q (r ' ) ,  (17.4) 
0 

where X h  ( r )  is the general solution of the homogeneous equation (17.2). 
That cp i s  indeed a solution of the inhomogeneous equation can be verified 
without difficulty: 

m 

L,cp = L,x + 5 dr' Q (1') LrGk ( r ,  r') = f &'Q(r')a(r-r')=Q. 
0 0 

According to a known theorem the general solution of an inhomogeneous 
equation is a sum of the general  solution of the corresponding homogeneous 
equation and any particular solution 'of the inhomogeneous equation, so that 
(17.4) is in fact the general solution of the inhomogeneous equation when X k  

is interpreted a s  the general solution of the homogeneous equation (17.2) 
satisfying appropriate boundary conditions. 
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Let u s  now find the Green's function of equation (17.2). In our case,  this 
is a fairly easy undertaking. Let r # r', so that 

L,G ( r ,  r ')  = L,,G ( r ,  r ' )  = 0. 

Since the Green's function i s  symmetric in relation to i t s  arguments, 
it clearly has the form 

(17.5) x f )  ( r )  x f )  ( r ' )  for r > r ' ,  
xis) ( r )  x f )  ( r ' )  for  t < r ' ,  G k  ( r ,  r ' )  = 

where xi1) and X p )  a r e  any two solutions of the homogeneous equation. 
r = r' (17.3) must be satisfied. This imposes additional restrictions on the 
choice of the functions ~ ( 1 )  and x(*). Indeed, condition (17.3) implies that 

For  

(17.6) 

for any arbi t rar i ly  small  A. 
the function (17.5) is bounded and continuous, but its derivative is discon- 
tinuous at r = r'. This signifies that (P -V) Oh is bounded and integration 
over an infinitesimal neighborhood of r gives a zero contribution in (17.6). 
Relation (17.6) thus can be rewritten in the form 

Let us evaluate this integral. If x ( ~ ) = + x ( * ) ,  

We compute the f i rs t  derivative: 

(17.6') 

(17.7) 

I r<r' r'+r 

It is discontinuous at the point r = r' and is thus a step function. The 

second derivative 

in (17.6) is clearly equal to 

@ Q ( r ,  r') is therefore infinite at  r = r'. The integral 

Function (17.5) is thus Green's function i f  

#)' ( r )  xi*) ( r )  - xp) ( r )  xp)' ( r )  = 1. 

This condition is met by two pairs  of solutions having the asymptotic 

(17.8) 

exp r e  s s ions * 
x(l) ---(I fi (4-  $ + 8 1 )  , xi*)-Tsin(&r-T+ i nl 6i). (17.9) 

 si) 
W e  take the potential in the form V (r)= V, (r) + - ra . 
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Inserting these functions in the Wronskian (17.8), we readily see that it is 
equal to unity at  infinity, where the above asymptotic expressions apply. 
Since the Wronskian is independent of r ,  (17 .8)  i s  valid for all r .  

Thus, two Green's functions of the homogeneous equation have the form 

where r ,  and r< a r e  respectively the larger  and the smaller of the two radii 
r and r'; the functions xi?) and xkl a r e  defined by their asymptotic expressions 

Corresponding to these two Green's functions we have two independent 
solutions of the inhomogeneous equation 

&) = f dr' Gi:) ( r  , r ' )  Q (r') = 

- G+ b\:) (r)! dr% (r') Q (r ' )  4- X k I  ( r )  1 dr' X i ? )  (r')  Q (r')}. 

Firs t ,  direct substitution will show that these functions indeed solve 

0 (17.11) 
r m 

0 r 

the inhomogeneous equation. 
rI, respectively, cp6$) a re  regular at  the origin if Q ( r )  increases fo r  r -+ 0 
not faster than l / P .  At infinity the second term in (17.11) approaches zero 
(if, a s  is usually the case,  Q ( r )  falls off sufficiently fast with increasing r )  
and cp#) has the form of an incoming o r  an outgoing wave: 

Since xkr and xi?.) behave for r -+ 0 a s  rlf* and 

(17.12) 

Note that besides G$', one can construct various other Green's functions. 
We will not consider these alternatives, however, a s  they a re  either linear 
combinations of the functions G(+) o r  generate solutions of the inhomogeneous 
equation which do not satisfy the boundary condition for r + 0. 

written in the form 
The most general solution of the inhomogeneous equation can be now 

B x k I  ( r )  + acp&) (r)  + (1 -a) ( r ) ,  (17.13) 

where a and fl a r e  arbi t rary constants. 
and the outgoing currents,  in general, a r e  not equal on account of the 
second and the third term.  In other words, the inhomogeneity Q in the 
Sch. Eq. corresponds, a s  we have already noted, to introduction into our 
physical problem of a mechanism which is  responsible for  absorption o r  
emission of particles. It should be s t ressed that for a given source Q the 
creation (or  absorption) probability may vary between wide limits. It i s  
entirely determined by the boundary conditions at  infinity, i. e., by the 
values of the constants a and fJ. 

solutions which satisfy the boundary conditions only for some discrete 

The amplitudes of the incoming 

For  negative energies, the ordinary Sch. Eq., a s  we know, may have 
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energy values. 
for any energy E w e  always have a bounded solution cpf i )  which vanishes for 
1-0. That the solution is regular at  the origin is proved in the paragraph 
following equation (17.11). 
(17.12), where we should put k = i ( k l .  
negative energies i s  identically zero  since the wave function (cp(+) - e-lklr) 
in this case is real .  
source; these particles cannot escape to infinity for lack of energy. 
However, for E which is  equal to an eigenvalue of the homogeneous equation, 
the solution cp(+) does not exist whenever Q is not orthogonal to the bound- 
state wave function. 

Indeed, let E,, be the energy of a bound state,  andcp,,and cp solutions of 
the homogeneous and the inhomogeneous equation, respectively: 

In the inhomogeneous Sch. Eq. the situation is different: 

That cp8) is regular a t  infinity follows from 
Notice that the particle current at  

It describes particles localized in space around the 

In the previous section we derived an expression for the Green's function 
of the radial  Sch. Eq. We used a typical "pedestrian" method. 
complex cases ,  such "pedestrian" methods a r e  much too tedious and a 
better approach is to use a general algorithm for the construction of 
Green's functions. 

a differential operator L. 
condition constitute a complete system: 

In more 

The underlying idea of this technique i s  surprisingly simple. Consider 
The eigenfunctions cp, satisfying the boundary 

I 
I 
I 

Multiplying the first  equation by %, the second by cp, and subtracting, we 
integrate the two sides of the equality over r from zero to R.  Seeing that 
both solutions a r e  regular for r - -c  0, we find 

I) 

For  R --+ 00 the solution cp should remain bounded and cp,, should decrease 
exponentially; the left-hand side therefore vanishes for R -* m. 

cp exists,  we inevitably come to the condition 
Thus, if  

m 1 df' Q ( f ' )  q, ( r ' )  = 0. 
0 

(17.14) 

§ 18. 
GREEN'S FUNCTIONS. GREEN'S FUNCTION OF THE 
THREE-DIMENSIONAL SCHROEDINGER EQUATION 

A REGULAR METHOD O F  DERIVING 

(18.1) 

(18.2) 
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which i s  clearly a Green's function, since by (18.1) 

As an example, we apply this method to the three-dimensional Sch. Eq. 

HgE = ( -  = A  + u)S, ( f )  = E$E (r). (18.3) tr' 

The complete set  of orthonormal solutions of this equation, as we have 
shown in Chapter 2 ,  comprises the functions of the discrete spectrum and 
the continuum: 

(18.3') q,,,,,, (r) = x -+ ( I )  Y I m  (+), *i+) (f).  

We will now construct the Green's function of the equation 

tr'k; 
where Eo is some fixed energy Eo =-. 2m 

eigenfunctions of the operator H - Eo. We s ta r t  with the fact that the 
functions (18.3') constitute a complete se t  of solutions of the equation 

According to the general prescription, we f i r s t  find a complete set  of 

We now write 

where y is an infinitesimal positive number whose meaning will become 
c lear  from what follows; the summation is car r ied  out over all the bound 
states. Inserting explicit expressions for $*) and integrating over the 
angular variable, we find for the second term in braces  

where 

(18.7) 

If r and r' a r e  so large that x can be replaced by their asymptotic 
expressions, the integral in (18.7) is readily calculated: 

m 
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The integrand is exponentially small  in the upper k halfplane (for r > r ' ) ,  and 
the integration contour can therefore be chosen as shown in Figures 11, 12. 
The value of the integral is entirely determined by the poles of the integrand 
in the upper k halfplane. These are the poles of S (k)for k = knl, correspond- 
ing to bound states,  and the poles of the denominator for & = f v m .  

I FIGURE 11. FIGURE 12, 

I 
For  Q(+) the poles of the denominator are situated a s  shown in Figure 11, 

and the poles of S (k )  lie on the imaginary axis,  so that for r ,> r' the integral 
is equal to 

I 

I Hence for  dA)(r,r') for sufficiently large r and r'we have 

The first term in (18.8) canceled with the f i r s t  t e rm in (18.5) owing to 
the relation between the residue of S (k) and the normalizing constant of the 
bound-state function (see § 15). 

We know from the previous section that Green's function of the radial 
Sch. Eq. for large r and r ' i s  

Therefore (18.9) can be rewritten as 

(18.10) Gg,)(r,r') = - ~ B T ; . G U  h i  (r ,r ' )Y~,, , (+)Yk($).  
Im 

It is readily verified that this formula for Green's function is valid for 
all r and r' if for Gi2) ( r , r ' )  we use the exact expression (17.10). Indeed, 
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inserting (18.10) in the Sch. Eq. we find 

Here is is the operator of the square of the orbital momentum: 

Moreover we used the obvious equality which follows from the completeness 
property of the spherical functions YI,: 

gyIm(e,q)~Y;,,,(e,cpt) = a ( c o s e - ~ ~ ~ e )  a(q-- ' ) ,  
im 

r r' 
where 8, e', cp, cp' are the polar and the azimuthal angles of the vectors 7 , ~ .  

corresponding position of the poles of the integrand is shown in Figure 12. 
If we take the minus sign before 

Proceeding along the same lines as before, we get 

in the denominator of (18.5) the 

Clearly 
= GP!'. 

(18.1 1) 

(18.5') 

This, however, is also apparent from the general expression (18.5). 

geneous Sch. Eq. 
Using (18.10) and (18.11) we write the general solution of the inhomo- 

in the form 

g(*) ( r )  = *E,  ( r )  + sdr' G"' E.  (r , r') Q @'), (18.12) 

where is the general solution of the homogeneous equation. 
For  large t Green's function can be written as 

In the derivation we made use of the known properties of spherical harmonics 
and of the definition of orthonormal continuum functions ( r )  (see 10, 
§ 11). 



8 18. ALGORITHM FOR DERIVATION OF GREEN'S FUNCTIONS 

From (18.13) we see that the solution of the inhomogeneous equations 
behaves asymptotically as 

(18.14) 

i. e., inhomogeneity gives r i se  to incoming o r  outgoing particle currents ,  
so that, as with the radial equation, it can be interpreted a s  a source (or  
a sink) of particles. 

The meaning of the infinitesimal constant y introduced at  the beginning 
of this section is now quite clear.  If it enters  (18.5) with the plus sign, we 
obtain the function G(+) which generates solutions corresponding to outgoing 
waves. If y is preceded by minus sign, we obtain the complex conjugate 
function G(-) which corresponds to incoming wave solution. 

be derived. 
In some very simple cases  closed expressions for Green's function can 

For a free particle (U = 0), the Green's function i s  

(18.15) 

In case of a Coulomb potential U = -+, the explicit form of the Green's 

function was derived in 11331. A simpler method of derivation of this 
Green's function will be found in 11341. We give here only the final result: 

2m F ( t  - i q )  G!"*' (r,  r')= G&v (r, r ')  = - - n* 4rrir-ti 

d- + + (9; + (- f&X)  M (- iky) .  ( 18.16) i d a  

Here ?=E, & =  ~ , X = ~ + f ~ + l r - ~ ~ l , y = f + r ~ - l r - r ~ l ;  2mE W I and Mini+ 

a re  known Whittaker's functions. 
in; 

For P' = 0 the expression for Green's function takes the simpler form 

(18.17) 2m 1 @)(*)(r, 0) = wG r ( I  - iq) w . (- 21kr). 
In. T 

This expression was first derived in 11351. 
Note, however, that the Green's function of the Coulomb potential takes 

on its simplest form in the momentum representation if the invariance of 
the Sch. Eq. under four-dimensional rotations (for E <  0) 1461 or  Lorentz 
transformations (for E > 0) 1471 is taken into consideration. In this case,  
it is convenient to introduce the function 

i 
G (E, E') = - i~ i (pa f k'))' GE (P, P') ( P ' ~  i &*I*. (18.18) 

The upper (lower) sign in this formula corresponds to E < 0 ( E  > 0) and the 
unit four-dimensional vector E has the form 

E o = -  ka T P' (18.19) 
pa f k' ' 
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Schwinger 1461  showed that for E < O ,  G ( E ,  f') can be written in the form 

(18 .20)  

where Ynlm ( E )  a r e  the four-dimensional spherical functions. Carrying out 
the summation over 1 and m ,  we get 

The expression for  G ( E ,  &') for E > 0 was derived in 147 1: 

(18.22) 

(18 .23)  

Here the functions Yplm a r e  analogous to the spherical functions for a two- 
sheet hyperboloid 
tips of the vectors f and E' on the hyperboloid sheets: i = l ( 2 )  i f  E l ies  on 
the upper (lower) sheet; the subscript j similarly signifies the position of E'. 

- Ea = 1 and the subscripts i ,  j mark the position of the 

S 19. SOME PROPERTIES O F  GREEN'S FUNCTION 

A s  we have shown in the previous section, the Green's function of the 
three-dimensional Sch. Eq. is expressed in t e rms  of the Green's function 
of the radial equation. We will therefore concentrate on the la t ter  only. 

Consider the function 

G,,I (+) ( r ,  r') = - fl f xt; (r>) Xk1 ( r< ) .  

We see that GI;' i s  an analytic function of R, in the entire upper halfplane, 
except at  the isolated points k = kn1 on the imaginary axis (bound states),  
where it has poles. Near the poles, for large r and r' it behaves a s  

This expression suggests that for any r and f we should take 

(19 .1)  
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where is the normalized wave function of the n-th bound state. This 
expression is indeed always applicable. Except for the poles at  the points 
k = knl ,  the Green's function has no other singularities in the upper k half- 
plane. 
ately obvious from the asymptotic expression 

For  1 k [--+ 00 and r > r' it falls off exponentially. This i s  immedi- 

where w e  should put k = kl + i&, (&, > 0); this expression also shows that in the 
lower k halfplane the function G(+) is exponentially divergent for I & I  --+ 00 and 
i t s  poles coincide with the poles of SI (k). In the following w e  will show that 
the poles of Sf (k) in the lower halfplane correspond to the so-called quasi- 
stationary states.  

s ta tes ,  and those in the lower halfplane to quasistationary states.  

tation of Green's function 

Thus, the poles of G8) in the upper halfplane correspond to stationary 

Some important theorems can be proved using the integral represen-  

(19.2) 

Integration of (19.2) over k' yields 

3 d&*GE'(r, r') = - - a z i { x X n l ( r ) X ; f ( r r )  + 
--OD n 

m 

+ 5 c ~ x , . ~  ( r )  xi,, (r')] = - nib (r - r') .  (19.3) 
0 

If we introduce a cutoff factor C (k') -+ 0, which is free from any singula- 

r i t ies  in the upper k9 halfplane. e. g., C, (ka) = &a&' with positive n -+ 0, we 
find completing the integration contour in the upper halfplane 

k-cu 

m - 
$ G g )  ( r ,  r')Cl (ka) d&' = 0 .  (19.4) 

-Qo 

If the cutoff factor has no singularities in the lower halfplane, e. g., 

Cs (k') = e-tak', a> 0, 

completing the contour in the lower halfplane w e  get 

5 dkPG!;' ( r ,  r') Ca (ke)  = - 2nid (r - r'). 
.-m 

Representation (19.2) leads to st i l l  another interesting formula, 

(19.5) 

(19.6) 

whose proof only assumes that ~1 a r e  orthonormal functions. 
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We can similarly derive all  the fundamental properties of the function Gk). 
We will not go into this problem, however, as G(-) is hardly ever encountered 
in the applications. 

The analytical properties of the Green’s function of the three -dimensional 
Sch. Eq. constitute a trivial generalization of the corresponding properties 
of the radial Green’s function. In particular, (19.3) and(19.6) a r e  replacedby 

(19.3’) 

(19.6’) 

20. GREEN’S FUNCTION FOR SEVERAL 
NONINTERACTING PARTICLES 

Using the standard method, we can find Green’s functions for the case 
For  two particles, the Sch. Eq. has of several  noninteracting particles. 

the form 
A S  (HI + H Z - - ) $ E  = {( - % A i  + ui(ri)) + 

+ ( -  &Az+Uz(rz))--E]$~(ri, rs) = 0, (20.1) 

where rl and rl a r e  the particle coordinates, rn, and rn, are the particle 
masses,  lJ, and U, a r e  the potentials that the particles see, and HI and H Z  
a r e  the corresponding Hamiltonians, 
this equation we can take all the various products of the form q k ,  (rl)$b (r,) 
where 
forming an expression analogous to (18.5) and integrating, we easily find 
for Green’s function 

A s  a complete se t  of functions of 

$k, a r e  the eigenfunctions of the Hamiltonians HI and HI. Then 

I 3  (20.2) 
, ,  (*) Gr (rl, r%; r1, rz) = T de G:*’ (rl, t i )  &\(r*, d), 

-03 

where G, (r,, r’J and GE-c (r,, r’,)are Green’s functions of the operators (H,--c) 
and (Hp - ( E  - e)), respectively. 
right-hand side with the operator (HI + HI -@. 
the preceding section, we get 

To check this expression, we act on the 
Using the relations of 

m 
1 T 2ni 5 deI(Hl-~)+(H~-(E-e))lG!*’(f~, rh G!&! (rl, rh)= 

= F E 5 de {a (ri - ij G!& (rz, rh+ 

+ 6 ( r z  - &)G!*) (ri, 6)) =qrl- r;) 6 ( r z  - ri), 

-03 

m 
1 

.-QD 

(20.3) 

i. e. ,  the right-hand side of (20.2) is indeedGreen‘sfunctionof equation(20.1). 
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We can similarly treat  the case of three and more particles. In the 
general case of N noninteracting particles, the Sch. Eq. has the form 

N 

( X H 1 - 0  ‘p (r,, * . ., r N )  = 0, (20.4) 
i-1 

and for Green’s function we readily find 

(20.5) 

Here the + and - signs correspond to the two cases when all the particles 
emerge from the center (+) or they all converge to the center (-). 

A significant aspect in the application of (20.2) and (20.5) is the choice 
of the path around the poles of Green’s function corresponding to bound 
states. The prescription here is very simple. 
these relations we use the integral properties of Green’s function (19.3’), 
the path around the poles in (20.2) -(20.5) should be precisely the same 
as that in (19.3’). In other words, the integration over E should be carried 
out along the real axis and the position of the poles of Green’s functions 
entering the integrand i s  automatically fixed by the sign of the infinitesimal 
constant 7 in (18.5). 
should replace E by E, + i6 (6 > 0) and car ry  out the integration over E,,  and 
when integrating G!!) we should replace E by E,  - 16. 

To complete our brief survey of the properties of Green’s functions, 
let us consider their behavior for close values of the arguments. 
seen in the preceding that the one-dimensional (radial) Green’s function 
Gkl ( r ,  r’) remains bounded for r = r’, whereas i ts  derivative with respect 
to r o r  r’ is discontinuous at this point. Green’s function GE (r ,  r ’ )  of the 

three-dimensional Sch. Eq. for r = r’ goes to infinity at r = r ’ a s  W G , ~ .  

This is obvious from the following considerations: each t e rm in (18.10) 
remains finite for r = r’. Therefore, any singularity of the function may 
be associated only with the weak convergence of the ser ies  (18.10) for 
large 1. On the other hand, as we will see in the next section, the wave 
functions X h l  in a potential U ( r )  approach the free-particle functions for 
large I :  

Since in the derivation of 

In practice this means that when integrating Gg)  we 

We have 

2m 1 1 

Therefore the radial Green’s function also approaches the Green’s function a?’ ( r ,  r’) of the Sch. Eq. with zero potential: 

(20.6) 

Thus, G (r, r ’ )  has the same singularity as  in the case of a Sch. Eq. without 
a potential, when the Green’s function can be found in explicit form: 
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This proves our assertion concerning the divergence of the three-dimen- 
sional Green’s function for  r + r‘. 
the physically relevant cases the difference 

Hence it follows immediately that in all  

G$*) ( r ,  r’)--2i*)(r, r ’ )  

is free from singularities at  r + r‘(except, of course,  the singularities 
associated with bound states,  when Green’s function goes to infinity as a 
function of k for all r and r ’ ) .  

Similarly we can consider the many-particle Green’s function (20.5). 
Its divergence for rl -+ r; is also associated with large orbital momenta. 
However, the character of this divergence is different. 
two-particle Green’s function (20.2) for equal arguments behaves as 

For  example, the 

21. PERTURBATION THEORY: COORDINATE 
REPRESENTATION 

The perturbation theory is probably the most popular and widely known 

The problem is 
topic of quantum mechanics. ’:< The li terature on the subject is very 
extensive, and we will therefore be a s  brief a s  possible. 
formulated a s  follows: let  a l l  the eigenfunctions @ and the eigenvalues 
of the Schroedinger equation 

Hog;’ = Et$’ (21.1) 

be known. 
which a r i se  when the Hamiltonian H, is incremented by a small  perturbation 
w .  The most general technique 
is to take the solution of the perturbed equation 

Find the corrections to the eigenfunctions and the eigenvalues 

F i rs t  we consider the scattering problem. 

in the form 

h = s!“’ + cPr, (21.3) 

where the increment c ~ r  is assumed to be small. F o r  cp1 we have the equation 

(Ho - E )  c ~ r  = - W ($Lo) + CP~). (21.4) 

Introducing Green’s function GE(r, r’) of the unperturbed operator (H, - E ) ,  
we write (21.4) a s  an integral equation 

( r )  = - dr’oE ( r ,  r’)  w (sP (r’) + cp* (rv. (21.5) 

There are several versions of the perturbation theory. The most commonly used is the Rayleigh- 
Schroedinger perturbation theory /136/: see also /137/. In this case both the wave function and the 
energy eigenvalue are series expanded in powers of a small parameter. 
only the perturbation theory of Brillouin /138/ and Wigner /139/ (see also /140/), when only the wave 
function is series expanded. 

Of the other variants we mention 
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Successive iterations of this equation give T b  to any desired accuracy. 
To t e rms  of second order  in W ,  we have, say, 

Any problem is thus reduced to the determination of Green's function 
GE and the actual computation of the ser ies  (21.6). 
Hamiltonian Ho, the Green's function has the form 

For an arbi t rary 

and to find it we need all  the eigenfunctions and eigenvalues of the unper- 
turbed level. 
(2 1.6). 

potential scattering, i. e., an unperturbed Hamiltonian of the form 

This considerably complicates the computation of the se r i e s  

The position is essentially simplified, however, if we f i rs t  consider 

We know from the previous sections that to find GE we require only the 
solutions of the Sch. Eq. for the same energy value E (see (17.11) and 
(18.9)). The perturbation theoretical expressions are thus markedly 
simplified. 
spherically symmetric W ,  

To first  order  in the perturbation we have, assuming a 

Here for 0, (r,  r') we used expression (18.10) and for $io' the expression 

In all  the above formulas we have to use the Green's function G(+) 
corresponding to outgoing waves. 
considerations. Incoming waves in the unperturbed function $f) a r e  
determined by external conditions, namely by the current reaching the 
force center from infinity, This current  is assumed to be known and 
independent of the interaction mechanism. Adding the perturbation W 
to the potential will thus only affect the outgoing waves. 
means that we should use the function G(+) and not others. 

This gives (to f i rs t  order  in the perturbation) 

This is readily seen f rom the following 

This in i ts  turn 

The asymptotic behavior of for  large r can be found from (18.13). 

where we introduced the unit vector n = 5 .  
function in the matrix element is $PA(-). 

Note that the final-state wave 

This is so, as  we have mentioned 
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in the preceding, because these functions describe the wave of particles 
which a r e  scattered in a definite direction (along the vector k n ) .  

to the scattering amplitude due to the perturbation. * To f i r s t  order in w ,  
the scattering amplitude is 

Using the expressions of this section. we can readily find the correction 

Here Sj0' is the unperturbed scattering phase, and 

(21.9) 

(2 1.10) 

where X k l ( r )  a r e  the radial functions of the unperturbed equation normalized 
to 6 (k - k' ) .  

A necessary condition for the applicability of perturbation theory is 

If the perturbation W is localized within some volume V ,  the above 

1) if  W d O ,  
2) for any W, provided that I +  00 o r  k 4 0 0 .  

The first  condition is obvious. 

(a) for k -+ 00 because the unperturbed wave functions widely oscillate; 
(b) for 1 + 00 because the functions 

I q k l  I $ p ( o ) I -  

relations apply 

The second is associated with the 
smallness of the perturbation theoretical integrals in the two following cases: 

are very small  i f  the particle 
1 energy E is l e s s  than the centrifugal energy, i. e., when r < 

We have thus laid the foundation for the treatment of the divergence of 
Green's functions for close values of the arguments given in the las t  section. 
The corresponding estimates a r e  a trivial consequence of the above relations. 

Fo r  discrete-spectrum functions the perturbation theoretical problem 
becomes more complicated, since besides wave function corrections, we 
should also find the corrections AEnl for bound-state energies. 
procedure of the perturbation theory in this case is well known, and we 
will not discuss it any further. We only note that finding the wave function 
corrections requires knowledge of all the eigenfunctions of the unperturbed 
equation. 
method (as for the scattering problem), which uses the solutions of the 
unperturbed equation for one energy value only I 147  1. 

. 

The standard 

In case of a potential interaction, however, we can propose a 

The equation for the radial wave function now has the form 

(2 1.1 1) 

An obvious shortcoming of the ordinary perturbation theory is that the scattering amplitude does not 
satisfy the unitarity condition. This led to the development of the so-called NID method /141, 142/. 
which is free from this shortcoming. Comparison of numerical solutions obtained by this method with 
exact solutions is given in /143, 144/. Recently Dashen and Frautschi /145, 146/ developed a character- 
istic perturbation-theoretical method within the framework of the S-matrix formalism. 
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2rn where w = W ,  and 

of the bound state. 

a r e  related in the usual way to the new energy value 

The solution is sought in the form 

Xnl = C1 ( r )  ~2 ( r )  + ~8 ( r )  &) ( r ) .  (21.12) 

where Cl and Cs a r e  a s  yet unknown, and cp?] and f$ are  respectively the 
i r regular  and the regular solutions of the unperturbed equation computed 

for the energy Eo = $(&!;)a of the unperturbed bound state. 

C, and Cs a r e  assumed to satisfy the condition 

The functions 

c;x!$ + c;cpz = 0. (2  1.1 3) 

In the theory of differential equation, this is known as  the Lagrange 
condition. Inserting (21.12) in (21.11) and using (21.13) we obtain for C; 
and Ci the exact equations 

c; = - +v (ClX ( r )  + Cacp (r)) ,  

c; = *" (CIX ( f )  + C M ) ) ,  
(21.14) 

where to simplify the notation we dropped al l  the indices of x(!)l and 
and wrote 

(21.15) 

Equations (21.14) can be solved by perturbation theoretical methods. 
In the f i rs t  approximation, we take in the right-hand side of these equations 
Cl = 1 and C, = 0. Moreover, we should remember that the wave function 
must everywhere be bounded, so that we should have 

c, (0) = c, (m) = 0, (21.16) 

since cp diverges at the origin as r1 and at infinity as dkZlr .  All this  
combined gives 

The f i rs t  condition in (21.16) is clearly satisfied. From the second 
condition we find k: in this approximation: 

rn 

A(') (k:) = (k#)' - = 1 I (p) x* (p) dp. 
0 

oa 
The normalization 1 x*(p)dp = 1. 

0 

( 2  1.17) 

(21.18) 
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Expressions (21.12) and (21.17) give a closed expression for the perturbed 
wave function of a bound state to f i rs t  o rder  in w. 
defining the bound-state energy correction, adds nothing to the usual 
expression of the f i rs t  approximation of the perturbation theory. 
advantages of this method become apparent only in calculating the energy 
corrections in higher approximations. 
energy correction in the second approximation. 
right-hand side of (21.14), we can find C, ( r )  by elementary means. 
condition C, (m) = 0 directly gives for the energy shift 

Expression (21.18), 

The 

As an example, let u s  derive the 
Inserting (21.17) in the 

The 

mm 

A") (&) = A(') (&) + 5 dp da [A(1) (&) - w (p)] [Ac0 (&) - w (a)] x 
0 0  

x x (PI x (4 Ix (PI 'p (4 + 'p (PI x (41 - (2 1.19) 

This expression, like all  the others obtained by this method, does not 
include the complete set of functions of the unperturbed equation, but only 
the two functions 'p and x .  
thus equivalent to the introduction of a complete set  of everywhere regular 
functions xnl, ut1 

A s  the Wronskian D i s  independent of r ,  we can express  9 in te rms  of x :  

The introduction of the i r regular  solution is 

(2 1.2 0) 

This means that the entire perturbation theory can actually be developed 
using only the regular unperturbed solution Xnl.  

I 22 .  PERTURBATION THEORY: MOMENTUM 
REPRESENTATION 

Let us  consider the equations of the perturbation theory in the momentum 
representation. 
actually used in field theory, and certain difficulties and singularities 
encountered in this advanced treatment can be understood within the frame- 
work of nonrelativistic quantum mechanics. 

The momentum formulation of the perturbation theory is 

We s ta r t  with the ordinary Sch. Eq. 

The wave function $1 (r)  is replaced by i t s  Fourier transform (or  in 
other words, we change over to the momentum representation): 

(22.1) 

The equation for 9 k  (4) (the Schroedinger equation in momentum representa- 
tion) takes the form 

(@ - k*) % (d = - 5 Vqq"pk (4') dq' v (22.2) 
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where 

(22 .3)  

The equation of f ree  motion (V (r) = 0) with a source in the right-hand side 

(9' - k') q* W = Q (4) (22 .4)  

has a particular solution 

W(q) = q1-P Q ( q )  jT , r++o, (22.5)  

whence we conclude that the function 

(22 .6)  

is Green's function of the Schroedinger equation in the momentum represen-  
tation. Just as in the coordinate representation, the signs f correspond to 
two independent Green's functions meeting different conditions at  infinity 
(an incoming and outgoing wave). 

In (22 .5)  changing over to the coordinate representation we get 

(22 .7)  

The vector r is chosen a s  the polar axis, and Q(q) is written in explicit 
form a s  a function of the Cartesian coordinates: 

Taking E = $ - ,  we obtain 

Pa r t s  integration over & gives 

The last  integral (as further integration by par t s  will show) is of the order  

of Thus (we write 

Q (9) for  Q (0, 0, 9 

and can be dropped from the asymptotic expression. 

(22 .8)  
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For simplicity let Q (4) a s  a function of the complex variable q have no 
singularities in the upper halfplane. * In this case integration of the f i r s t  
t e rm in brackets can be carr ied out using a contour which is completed 
in the upper halfplane and of the second term using a contour completed 
in the lower halfplane. 
and we find 

The integrand has poles a t  the points q = & (k f iy) 

&) ( f )  der$ Q ( k ) ,  Q ( k )  = Q (0, 0, k )  = Q (kf) 

i f  we use gJ+’(q). 
g‘“ thus corresponds to outgoing waves. 
It can also be readily shown that the Green’s function 

generates an incoming wave: 

(22.9) 

(22.10) 

(22.11) 

We can now readily write the perturbation theoretical expression for 

In the coordinate representation this solution 
equation (22.2). Note that the solution of the free equation clearly has 
the form (ph (q) = 6 (R - 4). 
gives a plane wave 

Considering the right-hand side of (22.2) a s  an inhomogeneity, we can 
write the general solution of this equation a s  a sum of the solution of 
the homogeneous and inhomogeneous equations: 

We thus obtain an integral equation for the wave function. Iterating 
we obtain the perturbation theoretical se r ies  

(22.13) 

This ser ies  is very often encountered in field theory and in related 
branches of physics. 

These singularities a t  points 9 
which make no contribution ro the asymptotic behavior of$&. 

QI + iq, (9,>O) would have given rise to terms of the form & ~ ‘ - q . ~ ,  
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§ 2 3 .  
THEORETICAL SERIES 

CONVERGENCE OF THE PERTURBATION 

The applicability of the perturbation theory constitutes a fairly delicate 
problem, Q of which only one aspect i s  considered here. 
generally makes use of the following test: i f  the first approximation of the 
perturbation theory is much l e s s  than the zeroth approximation, and the 
second is much less than the f i r s t ,  this is taken a s  a sign that the pertur- 
bation theoretical s e r i e s  converges and only the first t e rms  need be 
retained. In general, however, this is not so. We w i l l  demonstrate 
this fallacy for the case of the Sch. Eq. in the momentum representation. 
(Compare with the solution of this problem in the coordinate representation 
/ 154 ,  1 5 5 / . )  

We will obtain an exact solution of the problem and then t ry  to solve it 
using the perturbation theoretical se r ies .  
of a singular potential ( see  § 3) 

In calculations one 

Consider the particular case 

V ( r ) = - V o  for r<aandV(r )=O for r>O 

with Vo+ 00 and a - 0 ,  so that V,az-+const. 
take V, and a to be constant. 
entering equation (22.2)  is 

At the first stage, however, we 
The matrix element Vqq, of this potential 

(23 .1)  

For 14 - 4'1 a< 1 ,  series expansion gives 

for 14 - q' Ia> 1 the matrix element falls off rapidly while oscillating: 

(23.3) 

i The principal contribution is clearly from the region 14-4'1 < Ti. We 

will therefore first consider a potential with sharp cutoff: 

(23 .4)  
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where C-0, b + o o  for a - 0 .  

For example, the application of the perturbation theory to the hydrogen atom (the entire Coulomb 
potential is treated as a perturbation) gives in the second approximation a finite, but incorrect energy 
/148, 149/. In the presence of bound states the perturbation theoretical series may diverge starting a t  
a certain energy. This difficulty is sometimes avoided by using alternative methods, e. g.. Fredholm's 
method /150-152/ or the method of quasiparticles /153/. In the case of a highly singular repulsion 
potential, the perturbation theoretical series diverges. whereas the physical result is bounded. A 
development of this kind possibly arises in the so-called nonrenormalizable quantum field theories 
(see. e.g., /237/). 
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Equation (22.2) is written in the following form: 

b 

(q' - k') h (q) = 4d 5 q'2qb (q') 4'. 
0 

(23.5) 

If we a r e  interested in the bound state of the particle (i. e., ka = - Ik'l = - x s ) ,  
we choose a solution in the form 

for  q < b ,  (e for q > b  
(pr(q) = 4'- " (23.6) 

and insert  it in the equation to obtain after elementary integration 

Hence we find the binding energy (or  more precisely, the corresponding 
wave vector) 

x =  4nCb--i - (23.8) 
2n'C - 

We have so far regarded a, V,, C, and b a s  finite. In the limit as a -+ 0,  
V ,  -+ w we have from the preceding C 4 0, b -+ 00. If we wish to preserve 
constant bound-state energy on passing to a singular potential, b should 
go to infinity for a -  0 a s  

1 + h X X  (23.9) 
4nC 

Using (23.6) we readily find the wave function in the coordinate repre-  
sentation: 

(2 3.6') 

and from the normalization condition we find the constant A,  i. e., A = f2x7;;. 

singular potential. 

in  the form 

The wave function (23.6') diverges at  the origin, a s  is proper for a 

Now consider the problem of scattering. The wave function is sought 

E (2 3.10) 'pb (4)  = ' (&- 4) f ql - (kt  + iT )  * 

where y is an infinitesimal positive number. 
that this form indeed corresponds to the scattering problem: on passing to 
the coordinate representation, the f i rs t  t e rm gives a plane wave and the 
second term gives a scattered outgoing wave. 
starting equation and using (23.4) and the identity 

We will see in what follows 

Inserting (23.10) in the 

kr+  iT (23.11) i i 
q ' - ( k l + i ~ ) =  7 +q ' (q ' -k * -  i r ) '  
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we reduce the equation to the form 

Using (23.8), we rewrite this as 

which solves our problem of finding the wave function. 
Reverting to the coordinate representation, we get 

k - i n  r 

The scattering c ros s  section is 

(23.12) 

(2 3.13) 

Let u s  t ry  to solve the same problem with a singular potential using 
the perturbation theory. At a f i rs t  glance, this would appear to be very 
simple, as the matrix elements of the interaction V,,, go to zero for 4 4 0. 

equation (23.5). The unperturbed wave function (i.e., the solution of this 
equation without the right-hand side) is simply a plane wave: 

The perturbation theoretical procedure calls for iteration of the starting 

The first  -approximation correction is (see previous section) 

Inserting this expression in the right-hand side of (23.5), we find 

Reiterating, we find 

(23.14) 

Finally, to obtain the exact wave function we should sum the entire infinite 
perturbation theoretical se r ies ,  which in our case is easily accomplished, 
as the ser ies  reduces to a simple geometrical progression: 

W 

9 . ( 4 ) = 6 ( k - q ) +  2 CPf'(q)= 
-1 

= G 1 
= * @ - q )  + qS-&'-iT i - ~  *+id 

( T) 
(2 3.15) 
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and the result coincides with the previous exact expression. 

theory vanishes in the limit a s  1 2 4  0, i. e., when the range of the potential 
goes to zero. 
ser ies ,  is nevertheless different from zero, as it depends not on the range 
of the potential but only on the energy of the bound state. This is a c lear  
proof of the fact that smallness of the first and higher te rms  of the pertur- 
bation theoretical se r ies  does not guarantee sufficiently fast convergence 
of the entire ser ies .  
of the perturbation theory is that the wave function increment Acp(q) be much 
less  than the zeroth approximation function for all values of the argument. 

For  the case under discussion, the zeroth approximation function &) (4) 
is zero for k # q .  The corrections ~r)(q), on the other hand, do not vanish 
virtually for all q,  although in absolute value they go to zero. As the result ,  
any finite number of approximations does not give a correct answer for  the 
wave function. 

We have assumed, a s  is the common practice, that for a sufficiently 
small  perturbation hW and A +  0, the wave function rl, and the perturbed 
energy E can be expanded in powers of A o r ,  in other words, these functions 
a r e  assumed to be analytic in h .  

We will now give an example when the 
energy E is not an analytic function of h.  Let cpo, . . ., qN and Eo = 0, . . . , E N  
be the eigenfunctions and the eigenvalues of the unperturbed Hamiltonian 

We have seen in the preceding that each approximation of the perturbation 

However, the final result, which is a sum of an infinite 

The reason i s  fairly simple: the applicability test  

This i s  however not always so. 

H o ~ o  = Eo'~o, Hoqn = Enqn, n = 1, . . ., N. 
where En a r e  uniformly distributed over the interval (- A, A). 
the interaction Hamiltonian have nonzero matrix elements only between 
the states 0 and n .  all  elements having the same sign. Finally, to simplify 
the mathematics, let al l  the matrix elements be equal, Von = V .  

Further let  

The solution of the Sch. Eq. 

is sought in the form 

( 2  3.16) 

It i s  assumed that Cn < 1. 
equations 

For  these coefficients we readily obtain the 

(2 3.17) 

Solving the second equation for Cn and inserting the result  in the f i rs t  
equation, we obtain 

(23.18) 
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This is an exact equation for the energy E. 
equation has ( N  - 1) roots over the interval [-A, AI ,  one root for E > A and 
one root for E < - A .  

We see from Figure 13  that the 

FIGURE 13. 

Let us  find the ground state energy in the limit a s  N + m (the root of the 
equation for E < -A).  
so  that 

In this case, the sum can be replaced by an integral, 

We obtained a transcendental equation for E .  Note that for the effective 
coupling to remain weak (it is this case that we consider) it is necessary 
that for N + 00, V+ 0 so that the prelogarithmic coefficient goes to  a small  

number, i. e., E+ a< 1. In this case E = -A and we get 
26' 

1 
(2 3.2 0 )  NV' 

N-uo zA' 
E+A=-2Ae-",  u =  lim--1. 

We obtained an expression for the ground state energy, which is a non- 
analytic function of the perturbation force V and therefore cannot be 
recovered from perturbation theory. Note that in our case the distance 

between levels in the interval [-A, AI is of the order of 7 and therefore 

approaches zero  for N + 00, when the distance between the lowermost 

level and the next higher level is finite, being equal to A, = E + A = - 2 b - Z .  
We obtained a so-called energy slit,  plus a continuum in the interval 

28  

1 
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[-A. A]. Note that the probability An of finding the state 'po in the ground 
state 9, is finite in our case:  

(23.21) 

The above model probably appears to be highly artificial, without any 

In this respect w e  should emphasize that it may be treated a s  a model 
relation to actual practical problems. 

(though very rough) of the superconducting state. 
corresponds to the states 9 4  of a pair  of electrons with oppositely directed 
momenta k and -kand spins (Cooper pairs  /156/), and 2 A  can be inter-  
preted as the thickness of the Fe rmi  surface ( this  is the region where the 
superconducting interaction takes place). 
states in this model is associated with transitions to an intermediate state 
(po and is called effective attraction. This model qualitatively reproduces 
the characterist ic features of the superconducting state: the formation of 
the sl i t  for arbi t rar i ly  weak attraction and the nonanalytical dependence 
of slit width on the interaction force /157, 1581. 

Here the function cpn 

The interaction between different 

24. DIAGRAM TECHNIQUE 

The widespread use of the perturbation theoretical s e r i e s  in modern 
theoretical physics suggested the development of standardized computation 
procedures which had to be made a s  graphically meaningful as possible. 
This was accomplished with the advent of the diagram technique, invented 
by Feynman a t  the end of the 1940's 11591. 
evolved from problems of quantum electrodynamics, but now it is almost 
in universal use. 

The diagram technique is conveniently applicable to nonrelativistic 
quantum mechanics. 

Consider the Sch. Eq. with a perturbation W ( r ) :  

This technique originally 

We will now describe how this technique is developed. 

(24.1) 

Complete systems of wave functions of the unperturbed operator (H, - E )  
will be denoted by Si*' ( r )  and Green 's  function by GDf)(r, r'). 
sought in the form 

The solution is 

9 (r)  = 9 T  (r)+ 94 (r) ,  

where the increment 94 (r) is regarded as small. 
equation 

For  'p* ( r )  we obtain the 

( H o  - E )  94 = - w (r)  (9P + 94). (24.1') 
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Iteration of this equation yields 
m 

'p*, ( r )  = 2 cp!:' 
na1 

cpL)(r) = (- 1)"ldrS . . . 
. . . dr,Gp' ( r ,  rn) W (rn) G(E+) (rn, r,,-l) W (rn-l) . . . 

. . . W (rr) G(E) (rrr rl) W (rl) rp:"(rl). (24.2)  

We a r e  generally concerned only with the asymptotic behavior for r-,  00. 
In this case, using expression (18.3), we find 

(24.3) 

where k = kf. 

simple structure: f i rs t  comes in the rightmost position the unperturbed 
function 
direction ko. 
in the leftmost position we have the function (I&))* which describes the 
scattered wave propagating in the direction &. Each amplitude f(n)(k,&o) 
can be put in correspondence with a simple graph or diagram. 

As an example, we will draw the diagrams corresponding to first  few 
amplitudes (Figure 14). A one-to-one correspondence between diagrams 
and amplitudes is established a s  follows: the line from infinity to the point 
rl is made to correspond to the initial function &)(r,), a c r o s s  a t  a point 
r4 corresponds to  the function (-W (ti)), a line joining two adjacent points 
rt and rt+l to the function oh+)'G,, rt+S, and a line going to infinity from the 
last vertex to  the wave function of the final state $* (rJ. To calculate 
the amplitude p, we should aseemble the product following the above 
prescription and then integrate over the coordinates of all the vertices. 

The integral is then multiplied by (see (24.3)). The amplitude is 

represented by a graph with n vertices. 

We see from these expressions that the amplitudes f ( n )  have an attractively 

which describes the primary particle wave propagating in the 
Then come alternating the functions W and G(+) and finally, 

FIGURE 14. 

Each diagram has a simple physical meaning. The line drawn from 
infinity corresponds to a particle moving from infinity (in the initial 
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direction k,) in the unperturbed potential U.  This particle is scattered 
a t  the point fl by the perturbation W ,  resumes i ts  motion in the field u, 
reaches the point rz. where it is again scattered by the perturbation w, 
eventually reaching the point rs, and so on. The particle scattered for 
the last  time by W at the point r, escapes to infinity (moving in the direction 
of the vector k). 
the particle is described by Green's function G(+)(ri, rifl). 
therefore often called the propagation function or propagator. 

understanding of the problem, but hardly simplify the mathematics: 
the structure of the original perturbation theoretical se r ies  is a s  simple 
a s  they come. 

In more complicated problems, however, the graphs a r e  quite helpful 
in mathematical manipulations. Consider, for example, the case of 
several  perturbations 

Between two successive scattering events the motion of 
This function is 

In this simple case the graphs clearly contribute toward better intuitive 

w = w, + w,. 
If (-Wl) corresponds to a c ros s  and (-WJ to a c i rc le ,  then following the 
above prescription we have two amplitudes in the first  approximation 
(Figure 15) and four amplitudes in the second approximation (Figure 16). 
As the order  of the perturbation theoretical approximation increases,  the 
number of te rms  making up the amplitude grows catastrophically, 
use of graphs greatly simplifies the problem of drawing up the complete 
perturbation theoretical s e r i e s  and safeguards against omission of 
individual terms.  

The 

YJ 3 
FIGURE 15. 

In field theory we generally work in the momentum representations and 
all  the interactions a r e  incorporated in the perturbation W .  Expression (24.3) 
can be rewritten in an alternative form remembering that in this case 
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Inserting these functions in (24.3), we obtain af ter  elementary manipulations 

1 Here the propagators a r e  E - 
spond to the Fourier components of the potential. 

i T ,  and the vertices of the graphs co r re -  

§ 25. TIME-DEPENDENT GREEN'S FUNCTION 

Consider the inhomogeneous time-dependent Sch. Eq. 

a 
( i f i z -  H)cp(r, t )  = Q ( r ,  t i .  

A particular solution of this equation can be written in the form 

cp (r, t )  = 5 dr' d t ' ~  (r, t; t ' , t ' )  Q (rl, q. 

The time-dependent Green's function here is 

IE (t-f') -- 
dEGE (r,r')e . 

---m 

Indeed, seeing that 

i HGE = EGE + 6 (r - r ' ) ,  

I we readily find 

I 
i 

I E  (r-r) -- a i 
(if&= - H) G (r, t ;  r', t') = msdE 6 (r- r')e = 8(r - r') 8 ( t  - t'). 

(25.1) 

(25.2) 

(25.3) 

(25.4)  

Expression (25.3) is not single-valued, as we may use either @:)or Gg). 
We will see presently that the f i rs t  alternative (i. e., GF)) is of the 

It describes the natural evolution of greatest  practical importance. 
events from past to future. We will therefore consider this case only. 

Using the explicit expression for G(+) w e  write 

Integrating over E and remembering that y > 0, we obtain I 
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i. e., the function does not vanish only for f > t ' .  

Sch. Eq. Using (18.15) and (25.3) -(25.5), it can be written in any of the 
alternative forms 

The simplest Green's function is clearly that corresponding to the f ree  

(25.6) 

The solution of the free equation with a source Q ( r ,  I) is given by 

l k  I r-f 1-1 

cp(r, f) =-&idEdr 'dt 'Q (r', t') e * . (25.7) 

The meaning of this expression is crystal-clear:  the wave function at  a point 
r at t ime t is a superposition of waves converging a t  that point 

i k  I r-r'I -ig (t-f') 
e 

I f - f ' l  ' 

which left the point r ' a t  time t'. 
mined by the source density Q (r ' ,  t'). 
a t  the origin, which emits the wave at  a time t' = 0 (Q = 6 (r') 6 (t')), we have 

The amplitude of these waves is deter-  
In the simplest case of a point source 

(25.8) 

where 

Emission of particles with fixed energy e corresponds to exponential 
dependence of source density on time: 

-id 

Q ( r ,  t )  = @(r)  e". (25.9) 

Indeed, in this case integration over t' and E in (25.7) is immediately 
carr ied out and we obtain 

(2 5.10) 

where x =  yg. If a does not vanish only in a small  neighborhood around 

the point r', for large r we have the natural result  

(25.11) 

This is clearly an outgoing wave of particles of energy e. Its amplitude 
is the Fourier  component of the source function. 
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Another Green's function whose explicit form i s  known is that of the 
m z  harmonic oscillator (U = ) 

1s (r ,  I ;  r', t') i mo 
G ( r ,  f; r', t') = -- n ( %ihsino(t-ft.))(l.e " (25.12) 

where 

[ C O S 0  ( f  - t') ( f a +  r'*)-2 rr'] .  (25.13) mo s (r. r'r f') = 2 s i n o ( t - f 1 ' )  

Note that S (r, t ;  r ' ,  t') (like the exponent in (25.6)) is the classical  action, 
i. e., 

t 

S (r,  t ;  r', t') = L (TI) dT, 5 
where L = T - U is the system Lagrangian, and the  integral is taken over 
a classical  trajectory of the particle. 
it is closely related to the quasiclassical nature of motion in a potential 
U (r) which is only a l inear and quadratic function of position /160/.  The 
potential U may be an arbi t rary function of t ime in this case, U = U (r,  t ) .  

This is not an accidental result: 
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Chapter 5 

Q UASIS T A  TIONAR Y S T A  TES 

s 26.  INTRODUCTION. GAMOW'S THEORY 

In this chapter we meet with a new kind of effects: decay of radioactive 
nuclei or unstable particles and resonance scattering of particles.  
many events a r e  associated with unstable states.  
currently being devoted to investigation of resonance s ta tes  of strongly 
interacting particles,  briefly called resonances, which have been discovered 
in multitudes in recent years .  

Strictly speaking, perfectly stable states a r e  encountered very seldom. 
For  example, of all  the known "elementary" particles the only stable ones 
a r e  the proton, the electron, the y quantum, and the neutrino. Most of 
the nuclear states a re  unstable. 

states.  In nonrelativistic quantum mechanics these states a r e  generally 
treated a s  ordinary bound states.  
radiation field i s  thus ignored, although it is responsible for transitions 
from upper to lower states with emission of y quanta. 
treatment this interaction must be taken into consideration. 
that the same interaction (electromagnetic) produces two entirely different 
effects: it binds the electron to the nucleus and makes it jump from one 
state to another. Therefore, str ictly speaking, we cannot simply turn 
off the interaction responsible for electronic transitions leaving on the 
interaction responsible for the existence of bound states.  
the only stable level i s  found to be the ground state of the atom (the nucleus), 
with a continuum of states immediately adjoining it (the discrete spectrum 
is eliminated). 
y quantum by a ground-state nucleus. These delicate questions, however, 
a r e  not discussed in what follows. 

stationary states.  However, this description involves a number of 
qualitative singularities. 
a potential wel l  which is separated from the exterior region by a potential 
barr ier ,  the particle wave function in the interior region (e. g., qPa (0)) 
markedly increases for  certain E = E n .  In these cases  the wave function 
qE (r)  continued to the complex E plane is generally discovered to have a 
pole near En for E = E o n .  
r i se  to so-called quasistationary states,  o r  states of complex energy. 

a norm and develop a perturbation theory analogous to that for stationary 

A great 
Maximum attention is 

Excited states of atoms and nuclei constitute a special type of unstable 

The interaction of the electrons with the 

In more precise 
It is significant 

If this i s  done, 

The continuum states correspond to the scattering of a 

Instability effects can be described using the complete system of 

For example, when a particle is scattered by 

The corresponding solution of the Sch. Eq. gives 

The remarkable feature is that for  quasistationary s ta tes  we can define 
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states.  Note, however, that at this t ime the theory of quasistationary s ta tes  
is still in a relatively embryonic stage, and manipulation of quasistationary 
states therefore requires  extreme caution. 

Fortunately, many other problems of the theory of quasistationary 
states can be elucidated with the aid of exactly solvable models. 
problems include, e.  g., the analytical properties of the wave function of 
a quasistationary state,  the determination of the mean lifetime of an unstable 
particle from the scattering of i ts  decay products by one another, the expo- 
nential character of decay of unstable particles, creation of unstable 
particles, asymptotic behavior of the wave function of a decaying particle 
for r - +  00 and t+ 00. 

lived states (e.  g., those corresponding to a virtual level). :: Some aspects 
of the theory of unstable particles which can transform into one another 
(e.  g., the problem of the electric dipole moment of an unstable particle) 
a r e  treated in Chapter 8. 

The f i rs t  and the most important application of the concept of quasi- 
stationary s ta tes  was the theory of alpha decay of heavy nuclei developed 
in 1928 by G. Gamow 11611 and independently, though somewhat la ter ,  by 
Gurney and C ondon 

This theory i s  st i l l  being used in the calculation of decay probabilities 
of radioactive nuclei; the probability of decay with the emission of one 
proton or two protons 11631 is also estimated using this theory. 
historical retrospect, however, the significance of Gamow's theory is in 
that it constitutes the first  successful application of quantum mechanics 
to the atomic nucleus. 

We will briefly go over some well known starting facts: in a decay of 
a given nucleus, the a particles have a definite energy; thus, for  example, 
in the decay Uip --Th;i4+ a (the isotope Th29i4 is designated for historical 
reasons a s  UX,), the energy of the a particle is 4.7MeV. 
electrostatic repulsion between the a particle and the daughter nucleus 
Thg034: the interaction potential is given by 

These 

At the end of the chapter we will briefly consider other types of long- 

1 6 2  I .  

In 

There is obvious 

i.e.. the potential is 4.7 MeV at a distance of 55fermi. 
nuclear forces is only of the order  of the nuclear radius, Le. ,  

The range of 

1.2 A"' fermi =1.2 (234)'a fermi = 7.4 fermi,  

where the electr ic  potential is approximately 35 MeV. 

vertical axis gives the energy of the Th;i4+ a system; the distance between 
the a particle and the nucleus is laid off the horizontal axis. 
of R ,  we a r e  dealing with pure electrostatic potential; to the left of R the 
(negative) nuclear interaction is added. The state of the mother nucleus 
UgiE corresponds to the energy E, marked by the dashed horizontal line, 
El = 4.7 MeV. 
El. 
in classical  theory the particle may not occur. 

All that we know about the potential is summarized in Figure 17.  The 

To the right 

The resultant potential left of R should clearly be l e s s  than 
Between R and Rl there is a region where l J>  El, i. e., a region where 

Some qualitative features of nonstationary states in a periodic field (the so-called states with definite 
quasienergy) are  discussed in /238-'241, 17/. 
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Had the potential remained constant to the right of R ( a s  shown by the 
dash-dotted line in Figure 17) instead of falling off to zero,  the energy level 
E; would have been an ordinary stationary state.  
would have missed the main point, namely the decay; however, since the 
decay is an infrequent event (the decay time is 4.5 .lo9 years!)  the difference 
between E; and E,  is negligible. 

In this approximation we 

FIGURE 11. 

To find the decay probability in the first  approximation, w e  construct 
the wave function between R and R1 in the quasiclassical approximation. 
In this approximation 

r q  = e+ J pdx ,  

p =  v2m ( E l - U )  

( p  i s  the classical momentum corresponding to the total energy E=& + U). 
Under the bar r ie r  p i s  imaginary and the exponent in the expression for 'p 
is thus real .  
one increasing and the other decreasing (see § 2). 
transmission through the bar r ie r  is proportional to the ratio l'p (R1)l */ l'p ( R )  1 *, 
which clearly should be computed for the decreasing solution, when it 
is minimum:* 

We thus have two independent solutions under the bar r ie r ,  
The probability W of 

(26.1) 

(26.1') 

R,  is determined as the point where U - El = 0. 
potential U ( r )  is extended to R = 0 and R is correspondingly replaced by 
zero  as the lower limit of integration, the integral will converge to the 
simple result  

Note that if  the Coulomb 

(26.2) 

' A derivation of (26.1) from the uncertainty relation can be found in /164/. 
packet through a potentia1 barrier is treated in /165. 166/. 

The transmission of a wave 
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W -the transmission coefficient - is a nondimensional number. To find 
the decay probability 10, (the reciprocal of the decay time), the transmission 
probability should be multiplied by the number n of a particles impinging 
in unit time on the left wall of the barr ier :  

w = nW. 

Here 

This elementary expression* logically explains the fundamental property of 
a decay, namely the vanishingly low decay probability in case of a high 
bar r ie r  (for uranium W - 
probability on E , ,  the energy of the a particle. 

It is clear  that even if  all the physical prerequisites of the theory a r e  
satisfied and we may actually discuss an individual a particle inside the 
nucleus, the pre-exponential factor is evaluated only approximately. 
Exact calculation of this factor is a complicated problem which requires  
knowledge of the behavior of the wave function 9 near the left turning 
point and it therefore essentially depends on the  topography of the potential 
function inside the well. 

According to  the general theory, the situation depicted in Figure 17 is 
characterized by a continuum of real energies and nothing else .  
principle, in addition to the continuum with E > 0, discrete levels with 
E < 0 a r e  a lso possible, but clearly if U, > 0 there a re  none. 

What is the meaning of the energy El? How are we to dissociate from 
the continuum one certain value of energy? A hint is supplied by the 
physical interpretation of the phenomenon. The wave function of a 
particle in the nucleus (0< r < R )  falls off with time. Right of Rl, behind 
the bar r ie r ,  there  is a current  of particles moving in the radial  direction 
toward r +  00. 

describe scattering of particles; the wave function far f rom the center is 

a superposition of the two wave functions ? and r ,  i. e., a super-  

position of the incident wave and the outgoing wave; the amplitudes of these 
waves a r e  identically equal in magnitude: the incident flux is equal to the 
reflected flux, i. e., particles a r e  neither created nor destroyed. 

there be only the outgoing wave. 
number conservation, because 
time. 

and extreme sensitivity of the decay 

In 

Remember that the stationary s ta tes  from a continuum of real energies 

eAPdfl  &wF 

For  the description of a decay we demand that far f rom the force center 
This does not contradict the particle 

lgl'dr inside the nucleus decreases  with 
The macroscopic equation of decay is 

dN -= df - w N ;  N = Noeat, 

More detailed formulas and derivations will be found in /167/. 
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where N is the number of radioactive nuclei, i. e , ,  the number of particles 
inside a sphere r = R .  
seek a solution of the form 

In the given ensemble, N -sI'~,jadr. We should thus 

- 
where E = E l - i ;  is a complex number; i ts  imaginary part  r/2 is related 

to the decay probability, r = fw. ':c We can thus separate the variables in  
the nonstationary problem; 'I, ( r ,  t )  is sought a s  a product of 'I, ( r )  and an 
exponential function of t ,  just a s  in the stationary case. 

discrete levels formed for E < 0, when for large r the linearly independent 
solutions had the form e+ lk l r / r  and e- lk l r / r ;  the solution could be given the 
form e - l k l r / r  fo r  r - +  05 only for certain discrete values of E .  

solutions eikr/r and e-ikr/r for large r ,  and the sought solution will have the 
tes i red  form eikvr for r +  00 only i f  we select a discrete complex value 
E = E 1  - irl2. Thus, the Sch. Eq. 

The analogy is even more far  -reaching: in time -independent problems 

Similarly, in time -dependent problems, we have two linearly independent 

which is a partial  differential equation, is reduced by the substitution 

'I, = cp (r)  e n  to an ordinary differential equation 
42 

and the boundary condition 

(26.3)  

(26.4) 

takes care  of the discrete complex values of E .  

particles inside the "radioactive" bar r ie r  E,=Re@) and the lifetime of 
this state r = -2 Im E (the relation of r to the decay probability w was 
given above). 

r igor and foundation; the most remarkable point, however, is that nobody 
questions the validity of the final result ,  i. e., the numerical values of El 
and w ;  "only" the method of derivation is criticized. The main cr i t ic ism 
is associated with the form of 9 (r) .  
also complex. Asymptotically cp ( r )  - &kr/r. 
the imaginary part  of 

This is the way to solve the physical problem and to find the energy of 

This procedure gives rise to numerous doubts as regards mathematical 

Since E is a complex number, k is 
It is readily verified that i f  

is negative, we have 

sr 
' I , ( r ) - e  * -- 

(26.5) 

The method of complex eigenvalues was originated by J. J. Thomson /168/,  who applied it to the problem 
of electromagnetic oscillations of charge on an ideally conducting sphere. 
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(we expanded fl taking r<El ) .  

since r is small). * Such a function obviously cannot be normalized since 
lI$(*&diverges. 
time-dependent partial  differential equation 'p (r ,  t )  approaches the solution 
with separated variable $ ( r )  e+Et/n. 
bounded region of space always approaches the non-normalizable $ ( r ) d F I / n .  

expression that can be used a s  a norm in the perturbation theory and in 
determining the amplitude of 9 ( r )  for an arbi t rary initial state.  

of 9 (r)  for r + m. At any time to we find at  a given distance from the 
center those particles which were emitted, i. e., tunneled through the 
bar r ie r ,  at  a previous time t = to - r/v ,  where v is the velocity of the 
particles. However, on account of the exponential time dependence, the 
amplitude $ at the center at  the ear l ier  time was greater than it is a t  t o .  

Indeed the factor (& fl r )  can be written using the relation of r to w 

in the form exp (?$) = exp (T(fo- t ) ) .  Hence it follows that 9 ( r ,  fo) = 

Thus the function $ ( r )  for r -+ 00 grows exponentially (though slowly, 

In the next sections we will show how the solution of a 

The normalized function $ ( r ,  t )  in a 

In § 31 we will show that even for the non-normalizable $(r) there is an 

Here  we will confine ourselves to a physical interpretation of the growth 

= 'p (0, to - r /v) .  ;<* 
In conclusion note that all  the theorems on the expansion of an a rb i t ra ry  

function in a complete system of eigenfunctions apply to the $E ( r )  for real E .  
Our % (r) is thus not included in the complete system of eigenfunctions, 
which is quite understandable in view of the nasty behavior of % ( r )  for 
r - 0 0 .  

special form; we will see  in the following that the complex energy E" 
corresponds to a pole in the complex energy plane. On the other hand, 
for this very reason the determination of ( r )  in a real  problem with 
arbi t rary 9 (r ,  t = 0) requires application of a special technique, which 
differs from ordinary expansion in functions of a complete orthonormal 
system. 

After this introduction we can proceed with a more detailed discussion 
of the entire gamut of problems associated with the existence of compara- 
tively long-lived quasistationary states. 

The continuum eigenfunctions with rea l  E close to E,  = Re l? have a 

§ 27. WAVE FUNCTIONS 

We have already mentioned that quasistationary states a r e  identified with 
the poles of the scattering phase S (k) = f i r )  in the lower k halfplane. 
approach enables u s  to obtain various general results with regard to the 
form and the energy dependence of the wave function fo r  energies E close 
to the pole, to  find the scattering c ros s  section, etc.? 

This 

Consider the pole of S (k) = e Y W k )  at the point 

* *  
t 

It ir on these grounds that Lamb /169/ objected to Thornson's method. 
Similar arguments were already brandished by Love /110/ in connection with Thomson's method. 
More detailed investigation of the analytical properties of wave  functions wi l l  be found in /95. 111/. 
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Ch.5. QUASISTATIONARY STATES 

in the complex plane. At this point, the wave function x k  ( r )  defined by i t s  
asymptotic expansion (for simplicity we take 1 = 0 and consider uncharged 
particles) 

Xr (r)  - fl Sin (kr -k 6 (k)) (27.1) 

identically goes to infinity for a l l  r .  

should satisfy the symmetry conditions (13.5) -( 13.6): it should have poles 
a t  the points k, and -ki and zeros  a t  the points & and -ko; on the real axis,  
IS 1. The most general expression satisfying these condition is 

Let us  establish the form of S (k) near  the pole. We recall  that S (k) 

(27.2) 

where cp (k) is any function of k, which is real  for real  k and satisfies the 
symmetry properties (13.5), (13.6). As a rule 9 (k) is a sufficiently smooth 
function, so that near the pole it may be treated as constant (it is some- 
t imes called the potential phase). 

a r e  always real .  
the general relation (27.2) where k should be regarded a s  a r ea l  positive 
number. 

In scattering problems the energy and the wave vector of the particles 
The expression for the scattering phase is obtained from 

For  the scattering phase for kz<kl, k- k1 we get 

6 = 9- tan-' k -  kl' (27.2') 

The wave vectors a r e  generally replaced by energies: 

ir (27.3) (kl - ik$ = 2;;; [(k: - k:) - 2iklkz] = Eo - - . ha h' 
2 

Here Eo is called the resonance energy, and r i s  the level width (the 
resonance width). 
in the energy plane they lie on the second (the so-called unphysical) sheet 
of the Riemann surface; for T < E ,  and E - Eo we can readily derive 
expressions analogous to (27.2) and (27.2'): 

Since in the k plane the poles lie in the lower halfplane, 

E - - E o - K  
S (E) = e*" it , t a n - l x .  E - Eo (27.4) 

Using these expressions, we obtain for the scattering c ross  section 

The first  t e rm here describes resonance scattering by the quasistationary 
state 11721, the last t e rm corresponds to what is known as potential scat ter-  
ing, and the second te rm to interference of the two other terms.  

of the Sch. Eq. inside the potential range. 
Let the potential V ( r )  have a finite range R .  xio) is the regular solution 

We normalize this solution by 

1 I4 
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The total wave function is thus 

A (k) xio) ( r )  for r Q R ,  
x k  ( r )  [ - sin (kr  + 6,) for r > R. 

(27.6) 

At the point k = &,, this function should identically go to infinity. For  
r > R this ensures an infinite S (k )  and thus an infinite scattering phase 6 (k). 
In the interior region xio) is bounded by assumption and the wave function 
may identically go to  infinity only if  the coefficient A in (27.6) is infinite. 

To this end we 
use the previously obtained expression (15.18). Inserting the scattering 
phase from (27.2) o r  (27.4) and retaining only the dominant term,  we find 

The coefficient A is calculated without much difficulty. 

The average value of the wave function is clearly 

(27.7) 

(27.7l) 

Outside the b a r r i e r  x' - 1, which is much less than the maximum particle 
density inside the barrier if  r is sufficiently small. Physically this 
implies that particles accumulate in the region r < R: a particle entering 
this region remains there for some time before being allowed to escape 
outside. 

of flight through this  region r = - by the same factor a s  the particle density 

inside is greater  than the particle density outside. Hence we see that the 
mean lifetime 2, of a quasistationary state for  E c E,  is equal in i ts  order  
of magnitude (more exact formulas wi l l  be given below) to 

The particle lifetime inside the bar r ie r  is greater than the time 
R 
00 

(27.8) 

This time may be very large, which explains the origin of the t e r m  "quasi- 
stationary state". We should again emphasize that expressions (27.7) and 
(27.8) apply to Scattering problems; the energy E and the wave vector k a r e  
therefore both real. 

Qualitative analysis of various particular cases  shows that the strong 
dependence of the wave function on energy near certain points (poles) is 
obtained only if the potential is in the shape of a well, with one o r  several  
surrounding b a r r i e r s  (Figure 18). 
The wave function in this case is 

Indeed, consider a well with one barr ier .  

Here X r )  is the regular (at the origin) solution of the Sch. Eq. in region I; 
A (k) ,  a (k),  and 
the boundaries of the different regions. To be specific, we normalize x!) 

(k) a r e  completely determined by matching the solutions at 
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a s  in (27.5). 
Sch. Eq. under the bar r ie r  (region 11). 
but one decreases  and the other increases with increasing r .  
their  behavior is described in the quasiclassical approximation by the 
expressions 

The functions x(-) and x(*' a r e  two independent solutions of the 

Qualitatively 
Both these solutions a r e  monotonic, 

(2 7.10) 

If the potential bar r ie r  is sufficiently wide and high, i.e., if (kl d r > l ,  

the two functions a r e  essentially different from one another for r - R ,  even 
though they a r e  equal for r= R1 (X(*)(R1) = 1) (Figure 19): 

f 

The functions xp) and xi*) a r e  not particularly sensitive to k, since k 
enters  only through the intermediacy of the te rm (E-U) in the Sch. Eq., 
which varies insignificantly for small  changes in E .  Matching of these 
functions, however, may give rise to very pronounced energy dependence. 
Indeed let a and p, a s  determined by the matching conditions, be fairly 
close to each other (the exact cr i ter ia  will be derived below). 
on account of (27.11). the interior wave function is approximately equal to 
ax(+)(R) for r = R  and its logarithmic derivative hardly depends on energy 
(since x(+) itself is not very sensitive to k ) .  
insensitive to energy, and the wave function ~ ( r )  has the form shown 
schematically in Figure 20. 
this form in a wide range of a and fl values. 
this state of affairs is clearly 

In this case,  

The phase 6 ( k )  is thus also 

It is significant that the wave function retains 
The necessary cri terion for 

(27.12) 

X 

FIGURE 18. FIGURE 19. 

The situation changes radically near the points where a (k) vanishes. 
Indeed, at these points, the wave function under the bar r ie r  monotonically 
decreases,  x,(r)= pxk-) ( r ) ,  and Xdr)  has the form schematically shown in 
Figure 21. Thus, near  the points k =  k i ,  where a vanishes, the wave function 
abruptly changes passing through al l  the intermediate stages between the 
cases  depicted in Figures 20 and 21. It is clear  that the energy dependence 
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becomes more pronounced a s  the ratio X(- ) (R) /~ (~ ) (R)  increases, i. e., as the 
potential ba r r i e r  becomes wider and higher. 
situation described here  cannot ar ise ,  since x(')(R) and x(-)(R) will always 
be of the same order  of magnitude. 

If there is no bar r ie r ,  the 

FIGURE 20. FIGURE 21. 

S 28. EXAMPLE O F  A QUASISTATIONARY STATE 

We will now investigate a particular example of a potential (see 

For  r < R1 or r>  R the Sch. Eq. 
Figure 18) in which a particle has a quasistationary state. 

x; + k'x, = 0 

has two independent solutions e*"'. F o r  R1 < r < R 

x;-xyI = 0, where x = v w ,  KO = m. 
We will f i r s t  find a solution which has  the form 8 k r  a t  infinity. It is 

sought in the form 
for  r > R ,  1 z r + W r f o r  t<&.  

xp)(t) = er+ f!Pr for R > t  > R1, (28.1) 

Matching these expressions at the boundaries of the different regions, we 
obtain for the coefficients 

(28.2) 

where p R -R1. 
second independent solution 

Taking the complex conjugate of x ( + ) ( r ) ,  we obtain the 
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The general solution is written a s  

In the interior region, by (28.1), this function is 

xk (r)  = - fl+S3" +[+ [(a + 6)' - S (a + 6)l coskr + 
+ [ (b - u)' + S (6 - u)] sin kr}  . (28.5) 

To make this function regular at  the origin, the coefficient before the cosine 
should vanish. 
matrix: 

Using this condition and (28.2), we thus find the scattering 

(28.6) 

where 

k c o t k R i + x  
c ( k ) = % c o t k R l - x  ' 

If the bar r ie r  is sufficiently high and wide, so  that %p> 1, c a x p  is very 
small, and dropping it in (28.6) we obtain 

(28.7) x + ik S ( k )  = e-uk* 

Omission of c s K p  in expression (28.6) for S (k)  is permissible everywhere 
except near the point k = k. where c(k)  vanishes. 
neighborhood. 

Let us  investigate this 
Expanding 6 (k) in powers of (& - k,,), we write 

The denominator in (28.6) is  thus equal to 

and therefore vanishes for k = &,,: 

(28.8) 

(28.9) 

(28.10) 

S (k) thus has a pole at k = &,,; we see from the expression for  &,, that this 
pole is located in the lower halfplane. Using (28.9), (28.10), we write S (k) 
near the pole in the form 

(28.1 1) 
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In the immediate neighborhood of the pole, the f i r s t  two factors can be 
treated a s  constant, putting 

(28.12) 

Changing over f rom wave vectors to energies, we write S in the form 

(28.1 3) 

where the resonance energy E, and the resonance width r a r e  (e-lxp< 1) 

(28.14) 

It would be very enlightening to consider the physical origin of the quasi- 
stationary states. Let the right-hand wall  R of the potential bar r ie r  extend 
to  infinity. In this case the pole k, approaches kn and in the limit we end up 
with a potential shown in Figure 18 by the dashed line. 
for k <% with this potential is a discrete spectrum. All states vanish, 
except the one at k = kn, when 

Clearly the spectrum 

kn cot knR1+ ~n = 0, 

and the wave function falls off a t  infinity a s  e-nnr. Thus, in the limit as 
R --c 00, the quasistationary state is replaced by a true stationary state. 

state cannot exist, so that particles from the interior region r < R will 
tunnel through the bar r ie r  and escape to  infinity. The stationary state is 
thus replaced by a quasistationary state. Since the probability of this 
"tunneling" for large xp is very low, the decay time T is extremely high. 
Clearly, if  we a r e  concerned with short times, when the decay probability is 
ignorable, the unstable state may be treated a s  an ordinary stable state. 
In other words, a "quasistationary" state is defined as a state which 
replaces the Stationary state when a finite decay probability has  to be 
considered. 

the lifetime T :  

Let now R be a large but finite number. In this case the true stationary 

Using the argument of the previous section, we can  readily estimate 

Physically we can speak of a quasistationary state only if T is grea te r  

than the free time of flight T =  $-. This condition is met in a certain 

energy range AE around E .  Taking T d r s  1. w e  obtain in an elementary way 

Hence it is c lear  that the concept of a "quasistationary state" is not 
rigorously defined. The only condition for the formation of a relatively 
long-lived state during the scattering of particles by a potential b a r r i e r  
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is that the particle energy differ from E,, by not more than AE. 
sense that we say that a quasistationary state of width r has no fixed energy 
and is "spread" over a certain energy interval - r WT > r. 

As an illustration, consider the following example. Suppose that besides 
a quasistationary state of energy Eo and width r there is also a bound state 
of energy El. 
scattered by this potential and emits a 7 quantum, dropping to a bound state 
with energy El (radiative capture). 
always by the square of the matrix element 

It is in this 

Consider a process in which a particle of energy E is 

The probability w ( E )  is determined a s  

w ( E )  - 1 (XEI 6x1) la# 

where 0 is the electromagnetic transition operator and x1 is the wave 
function of the bound state,  which differs from zero  only in a small  neigh- 
borhood of the potential, Therefore the energy dependence of w ( E )  is 
mainly determined by & : 

p i 4  
( E  - E ~ ) *  + 1-14 * 

L 

w ( E )  = const. x; = const . 

If the scattered beam is monochromatic, monochromatic 7 quanta of 
energy E -El a r e  emitted. 
a s  we see from the above relation, is highly sensitive to particle energy. 
w (E)  i s  high only when E is close to Eo. 

energies E spread within an interval AE > r. 

However, the probability of 7 quantum emission, 

Now suppose that the incident beam contains particles of various 
Radiative capture operates 

only for particles having energies close 
to Eo.  Correspondingly the energy of 
the y quanta will be close to E, - E,, and 
their  spectrum will have the schematic 
form of the curve shown in Figure 22. 
The width of the resonance curve is 
determined by the shape of the w ( E )  
curve and is equal to r. 

/2 
47-4 f The width of the 7 quanta spectrum 

FIGURE 22. is thus determined by two factors: the 
energy spread AE in the incident beam 
and the width r o f  the resonance level. 

For  AE = 0 all  quanta have the same energy E - E,. A s  AE increases 
from zero to r, the scatter in the energy of the r quanta a lso increases.  
A s  AE is further increased, however, the energy spread of the emitted 
quanta remains invariably of the order  r. 
always be treated a s  monochromatic, irrespective of the beam energy 
spread LW. It seems a s  if the scattered particles a r e  f i rs t  trapped by 
a virtually stable state with energy Eo and then drop to a lower state xl 
emitting a quantum. 

definite energy. Note that in every particular instance a state with fixed 
energy E ,  equal to the energy of the incident particle, is formed. 
energy uncertainty of the quasistationary state is to be understood only in 
the sense that for  a n y  energy value E from the interval I E -E,( g r 
a relatively long-lived state may form. 

Thus for r-, 0 the quanta can 

For  small  but finite r ,  the quasistationary state is said not to have a 

The 
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We have derived a number of general formulas for  quasistationary states.  
In their  derivation we used only the energy dependence of the wave function 
associated with the pole t e rm in S ( k ) .  All the other quantities were treated 
a s  constant. If we a r e  concerned with the energy range not too near  the 
pole ( [ E  - E o / >  r). this procedure is not very reliable and the actual form of 
the potential should be taken into consideration in calculating the energy 
dependence of all  the physical quantities. In other words, in these cases  
we can no longer introduce the general concept of a "quasistationary state" 
which depends on the potential through Eo and r only. There is no fixed 
boundary between rea l  "quasistationary" states and states which are 
essentially dependent on the form of the potential. Various authors draw 
this boundary in various places depending on t h e i r  personal tas tes  and 
needs. Often the position of this boundary is decided by the particular 
author 's  wish to interpret the experimental data a s  supporting one of the 
several  theoretical alternatives. 

To avoid confusion, note that when we say anything about a "quasi- 
stationary" state,  we mean that the assertion i s  entirely t rue only in the 
limit a s  r-+ 0. 

29. THE DECAY O F  A QUASISTATIONARY STATE 

We have seen that rigorous treatment of quasistationary s ta tes  is 
impossible without taking into consideration the particular physical 
process leading to the formation of the state. If we a r e  dealing, say, 
with potential scattering of particles with formation of a "quasistationary" 
intermediate state,  the process is described by the function Xk(r)  introduced 
in the previous section in connection with scattering problems. 
"quasistationarity" emerges here only as an exceptionally large value of 
the wave function inside the barr ier .  
by various reactions also have their own specific wave functions. 
we can consider the problem of the decay of a quasistationary state. * 
In this case we again will be dealing with a characteristic wave function. 
In the present section we will derive this function and t ry  to analyze i ts  
properties.  

The problem is formulated as follows. Consider a potential ba r r i e r  
(of the form depicted in Figure 18). At the t ime t = 0 the wave function 
inside the ba r r i e r  is %(r); it is zero under the barr ier  and elsewhere. 
We a r e  interested in finding the evolution of the  wave function in t ime, 
i. e., the function x ( r ,  t )  for t > 0. 
solve i t  we naturally need the time-dependent Sch. Eq. 

The 

Quasistationary s ta tes  produced 
Finally 

In doing so, we follow Drukarev's method /173/. 

This is  a nonstationary problem and to 

(29.1) 

with the initial condition x l t d  = %. 
to remain bounded for a l l  r and t .  
x ( r ,  t )  in the form of an expansion 

The wave function is further required 
Following the usual technique, we seek 

Various aspects of the decay of a quasistationary state are considered in  /113-111/. 
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where X I  ( r )  a r e  the solutions of the time-independent equation 

normalized to 8 (k - kl).  
have the standard form 

These solutions outside the range of the potential 

The function c ( k )  in (29.2) is found from the initial condition: 

m 

c (k )  = s drXoXk. 
0 

(29.4) 

The dependence of c ( k )  on k should clearly be the same as for the wave 
Thus, c(k)is representable in the form (compare with (29.3)) 

(29.5) 

function x k .  

1 
c ( k )  = (a (ik) S"*(k) - a (- i k )  S-"* ( k ) ) ,  

where u (ik) is some smooth function of k .  
the integrand in (29.2) is an even function of k. 
(29.2) in the form 

The above expressions show that 
Using this fact, we write 

We now introduce a new 'variable 

(29.6) 

(29.7) 

Substituting this variable in (29.6), we obtain 

~ ( r ,  t )  = B 1 d y e - u ' [ a ( i k ( y ) ) S ( k ( y ) ) - a ( - i k ( y ) ) ] ,  B - a x .  (29.8) 
imr' f l m  

- f i m  

The integration path in this integral (Figure 23) is an unsuccessful choice, 
since everywhere along this line e-p is an oscillating function. We therefore 
rotate the integration path so that it coincides with the rea l  axis. CU' now 
rapidly falls off in the direction of both positive and negative y. 

The functions a a r e  smooth and without any singularities, so that they 
do not interfere with this deformation of the integration path. 
however, is different as f a r  as S (k) is concerned, since we definitely know 
that this function has singularities. 
plane. 

stationary state is (see (27.2)) 

The situation, 

Let u s  find their  position in the complex 

The most general expression for  S (k )  in the case of a single quasi- 
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9 29. DECAY OF QUASISTATIONARY STATE 

Here So (k)  is some smooth function of k ,  ko is the pole. Changing over 
to a new variable y ,  we find 

We should distinguish between two cases .  
(1) r > u , t  , where u, is the velocity corresponding to resonance energy, 

, =-1 , kl is the real  part  of 4, k o r  kl - ikp. In this case the poles of 

S (k (y)) lie in the diagonally hatched regions in Figure 23 and do not interfere 
with the rotation of the integration contour toward the real axis. As the 
integrand in (29.8) contains the exponential function e+, the main contri- 
bution to the integral comes from the region y = 0 and we approximately get 

xn ( r ,  t )  = B 6 9 ( k  (0)) ic (k (O)), (2  9.1 0) 

where the subscript n refers  to the nonresonant case. Here S (k) and c (&) 

should be taken for the value of k corresponding to y = 0, i. e., k (0) = -. 
Thus k (0) is the value of the wave vector k which characterizes the particle 
emitted at the time f = 0 from the origin and reaching the point r a t  time t .  

mr 
rif 

FIGURE 23. FIGURE 24. 

We see from (29.10) that the function xn ( r ,  f) is entirely determined by 
the coefficient c (k (0)), which specifies the fraction of the initial state 
corresponding to particles of wave vector k (0). Thus, X n  describes 
particles which left the origin at  time t = 0, i .e . ,  immediately after the 
formation of the initial state b. 
this k leave the region of nonzero potential instantaneously, without 
lingering there.  

A more complex situation a r i s e s  in the second case: 
(2) r < v , t .  

Physically this means that particles with 

In this case r and f a r e  such that at the point f we can 
observe both fast particles with u > ur and slow particles with u < v , .  
see f rom (29.9) that the poles of S (k Q) in this case a re  located so that one 

We 
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of them obstructs the rotation of the integration contour toward the real  
axis. 
the point 

This is the pole situated in the unhatched region of Figure 24 at 

Thus in calculating the integral (29.6). we obtain two terms: one contri-  
bution comes from the region y = 0 and the resulting term is entirely 
analogous to xn in (29.10); the second contribution comes from the pole. 
The final result  is 

(29.11) 

The first  t e rm x n  has the same meaning a s  before. It corresponds to 

particles of velocity u = f instantaneously escaping outside the potential range. 

fa r  from the real  axis,  it gives a substantial contribution to the integral, 
and the second te rm may thus be much larger  than the first  term.  
is so because cy' is definitely not small  at  the pole. Reverting from y to 
the original variable k ,  we write the additional te rm in (29.11) in the form 

The second te rm is much more interesting. Although the pole y = y, l ies  

This 

(2 9.12) 

All the smooth functions a re  taken a t  the point k = k , ,  i. e., at  the pole 
corresponding to a quasistationary state; xr describes a traveling wave 
whose front propagates with a velocity v , .  

c (k)  we have 
Let us estimate the coefficients c (k )  and a (ik,) entering x n  and x r .  For  

R 
c ( k )  = 5 X&dr  OR (29.13) 

0 

( R  i s  the range of the potential). To obtain an estimate for a (iko), note 
that for k zz h, the function xk may be written in the form A (k) x(O)(r), where 
x ( O )  is normalized to unity (see (27.5)) and A' (k )  has a pole at  the point k = & 
(see (27.7)). We thus have a chain of equalities 

R 
c ( k ) = T ( u ( i k ) S " ' ( k ) - a ( - i k ) S ~ ' ' ( k ) )  i - AS x o ~ ( 0 ) d r  - A X O F .  

0 

u (ik,) = i%o fl lim S-''* ( k )  A (k) = - f ,  OS,('* (k )  a . (29.14) 
k-k, 

Note that there is a definite analogy between c (k) and a (i&). 
this point, consider the solution 

To il lustrate 

Tk ( r )  = 2i fl% S-'Is X k  (r) - efkr  - S-1 (k) e-fkr ,  
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5 29. DECAY OF QUASISTATIONARY STATE 

which for k 4 k, reduces to  the solution x ,  corresponding to  a complex 

energy eigenvalue E, -T with the asymptotic behavior of 

sponding overlap integral ? i s  

ir The co r re -  

L 

c = zk xo dr = i s"' c (k) = @ (a ( ik)  - a (- ik) S-' (k))  . 

Taking the limit a s  k -+ k,, we find 

a( ik , )  = - i x r x o d r .  i 
m (2 9.1 5) 

Thus c (k) and a (ik,) a r e  both overlap integrals with b, although different 
functions a r e  involved in the two cases:  c ( k )  corresponds to functions with 
rea l  E and a (ik,) to functions with complex energy eigenvalue. 

they were derived: in taking the integral in (29.8) the integrand (with the 
exception of cy') was assumed to be relatively insensitive to y for y m  0. 
This is t rue if all the factors in the integrand in (29.8) do not change much 
when y is incremented by unity. 

In analyzing (29.10) -(29.15) we should remember under what conditions 

A change of y by Ag - 1 corresponds to 

The treatment is legitimate if Ak is l e s s  than the interval 8k where S (k) and 
a ( ik )  may be regarded a s  constant. 

the energy i s  of the order  of 1 MeV; we have 
In nuclear physics, a characterist ic nonuniformity length is 1 keV, and 

Hence we obtain the time f starting with which hk < bk: 

In atomic effects, 8 E -  0.1 eV, E - 1OeV. SO that 

iO-l'.iO-rJ 
10-6 t > -  = 10-12sec. 

In elementary particle physics 8E - lOMeV, E - lOOOMeV, so that 

lo-. lo-' 
f>y = 10-20sec. 

These est imates  show that expressions (29.10) -(29.14) a r e  valid for  
virtually all measurable times. It is only a t  the very f i rs t  instants following 
the s ta r t  of decay that these expressions do not apply. 
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§ 30. RADIOACTIVE DECAY 

The physical meaning of the various expressions in the previous section 
is perfectly clear:  a t  the time t = 0 the wave function Cp, ( r )  did not co r re -  
spond to a state with definite energy. The probability of finding the particle 
with energy E (and wave vector k )  is proportional, by the general postulates 
of quantum mechanics, to the square of the matrix element (01 k )  = $$&. 
Therefore, from the standpoint of elementary physics, the "spreading" of 
the initial state can be described a s  follows: if the particle with energy E 
does not linger inside the potential bar r ie r  and escapes instantaneously, it 
will reach the point r = ut after the time t. 
of (29.10) and of the first  t e rm in (29.11): the amplitude of the wave function 
a t  the point r is proportional to the amplitude of the state with energy E (and 

corresponding velocity u =  z)  in the initial wave function. 

kinematic considerations lead us  to expect that no such particles will yet be 
observed for r > uot: none of them could have reached these points by that 

time. If r <  u,t, however, these particles 
should be observed for all  r ,  since i f  a 
state has a certain lifetime z, these 
particles a r e  observed not only a t  the 
point r = uof but a lso at  the point 
r = uo ( t  - z). If there is a probability 
P (t) that the particle has a lifetime T ,  

the particle density (at  a distance r from 
the source a t  time t )  should be pro- 

portional to P (z -6). 
the case represented by the second, 
resonance t e rm in (29.11). Moreover, 
from the form of this te rm we conclude 

This is precisely the meaning 

hk 

If now E is close to the energy E, of the quasistationary state, elementary 

This is in fact 

FIGURE 25. 

that for  E - E o  a "quasistationary" state is formed, and the probability of i ts  
rr 

decay at  time af ter  formation is proportional to e". We thus a r r ive  a t  
the well-known law of radioactive decay. 
bution of particles / $ ( r , f ) ) *  a t  time t has the form shown in Figure 25. The 
maximum a t  small  r corresponds to the region inside the bar r ie r ,  and the 
maximum a t  large r corresponds to decay of a "quasistationary" state a t  
t = 0, instantaneously after i ts  formation; this peak advances with velocity 
uo. Owing to continued decay, the particle density in the quasistationary 
state gradually decreases.  To the right, i. e, ,  for r > uot, the probability 
density is less, since the "decay" products have not yet reached that 
region. The finite 'lbackground'' of particles for r > u,t is associated with 
the wide range of particle energies present in the initial state. 

Note that in the stationary theory the wave function of a quasistationary 
state is generally adopted a s  the solution ( P k o ( f ,  t )  of the Sch. Eq. which 

satisfies the boundary condition a t  r = 0 and behaves a s  e (&,is a 
complex number) for  r -t 00. On the other hand, for rea l  k ,  we have the 
wave function of the scattering problem, whose asymptotic expression is 

The probability density dis t r i -  

t k r - 4 E G ) t  

(30.1) 
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9 30, RADIOACTIVE DECAY 

A quasistationary state corresponds to a pole of S (k). Dividing X a  ( r )  by 
i - im T I =  (k) we find that for k + ko the second t e rm vanishes and 

(30.2) 

Thus the two solutions a r e  intimately linked with one another. 
gained from the introduction of the function q k ,  is obvious. for 
which the Sch. Eq. h a s  a solution of the form qa, directly determines the 
position and the width of the quasistationary state. Moreover, comparison 
of (30.2) with (29.12) shows that q~4 for r<uof faithfully reproduces the 
dependence of the true wave function 'p ( r ,  t )  of the decaying state on r and t 
(here f is reckoned from the time of formation of the decaying state).  

is often discussed in the l i terature 11'78 -1801. 
to make the following remarks.  
section we see that It$(r,t)(l is a nonexponential (decreasing) function of time. 
This is understandable, since by specifying an arbitrary initial state Ipo ( r ) ,  
we form a superposition of an exponentially decaying quasistationary state 
and a packet of particles with a continuous spectrum, which in fact introduce 
the f i rs t  nonexponential t e rm in (29.11). * This is a physical inevitability. 

If the resonance te rm is the dominant t e r m  in 9 (r ,  f )  (which is almost 
always the case),  the decay is exponential. That the resonance te rm is 
almost always dominant can be easily verified. 
this chapter, we readily estimate the ratio of the squares of the moduli of 
the f i rs t  and second t e r m  in the wave function (29.11) for r g  uot. 
of magnitude we have 

The advantage 
F i rs t ,  the 

The problem of the allegedly exponential character of radioactive decay 
In this connection we wish 

From expression (29.11) of the previous 

Using the expressions of 

To orders  

(30.3) 

The dependence of this ratio on t/fo is schematically shown in Figure 26. 
It is clear  f rom the figure that the nonresonant term is greater  than the 
resonance t e r m  of the wave function only for very small (t < fd o r  very 
large (t > 4) times. 

Fo r  intermediate 

For ta and t, we have approximately 

(30.4) 

t values, the resonance t e r m  dominates. This means 
that for  all t between the l imits fl < t < tl the decay is practically exponential, 

r 6 10-15eV = 10-nerg.  Hence 
In the particular case of alpha decay Eo = 1 MeV = lO-'erg, to 3 1 sec,  

(30.5) 

When a complete system of stationary states is used, the nonexponential character of decay follows from 
the Krylov-Fock theorem /181/ (which states that the decay law is completely determined by the energy 
spectrum of the initial state), since the energy spectrum of the initial state is bounded from below. 
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Ch.5. QUASISTATIONARY STATES 

We see from these estimates that alpha decay follows the exponential 
curve with astonishing accuracy. 
can be observed only a t  the very f i rs t  instant following the formation of 

Deviations from the exponential law 

PA 

t 
FIGURE 26. 

the decaying state-or for very large 
t imes (t> sot,), when virtually no 
decaying element has been left  
(e-6o = lo-"). 

The radioactive decay i s  thus seen 
to be exponential i f  the resonance width 
r is sufficiently small  (r<Ed. 
nuclear physics Eo is of the order  of 
1 MeV and to ensure exponential decay 
we should have 1 MeV. In elemen- 
tary particle physics Eo - 100 - 1000 MeV. 
In atomic physics E,  - 10eV. In these 
cases  we respectively have r< 100- 
l000MeV and r< 1OeV. 

however, that the preceding treatment 

In 

We should always remember,  

is based on one highly significant assumption. 
the previous section we assumed that (Olk) = j.Jdgrdr, So , and Q did not depend 
much on k .  
energy spread 

In deriving the relations of 

This is not always so. We can create  a wave packet with 

AE-S r 

and mean energy E lying somewhere in the interval IE, - r, E, + rl. In 
this case,  all  the quantities of the form So, a will be highly variable in 
the region around E and a direct  calculation will show, a s  in the previous 
section, that the decay has nothing in common with the exponential function. 

of a quasistationary state with energy E is independent of AE and is given by 
In other words, we may say that for A E > r  the probability of formation 

(this is known a s  a Lorentz distribution). 

is not exponential. 
an atom in the second excited state, whose width r, is much less than the 
width rl of the f i rs t  excited state. 
is allowed: the system emits  a quantum y, (of energy Eo,) and drops to the 
first  excited level; then it emits  a quantum yl (of energy Eo,) and drops to 
the ground state. The energy of the quantum 
measurable by modern techniques with an accuracy A (ko,)<r,. 
excited level, however, is not populated according to the Lorentz curve: 
only a certain part  of the level is filled. 
is not an exponential function of time. 

If, however, rs> r, and the second level is completely filled (i. e., in 
the entire energy interval AE - r,), the first level is always populated 
according to the Lorentz curve and therefore decays exponentially. 

If the probability distribution is not a Lorentz distribution, the decay 
This case is readily realized in practice. Consider 

Suppose that a cascade gamma transition 

can be measured; ho, is 
The f i rs t  

The decay of the first level thus 
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9 31. PERTURBATION THEORY 

§ 31. PERTURBATION THEORY FOR 
QUASISTATIONARY STATES 

We have so  far  mainly concentrated on specific decay properties of 
quasistationary states.  Formally these states constitute a continuum, 
although on account of their  fairly long lifetime they have a number of 
physical and formal properties which a r e  reminiscent of stationary states.  
In particular,  we can introduce an effective normalization integral for 
quasistationary states and derive a number of results which are very 
s imilar  to the corresponding resul ts  for stationary states. 

we follow the presentation of 11831. 

stationary state at  the point k, = k, - i k 2 .  
the potential. 
resonance) change? This problem can be solved a s  follows. 

In our  treatment of the perturbation theory f o r  quasistationary states,  :: 

Suppose that in an unperturbed potential V (r)  the particle has a quasi- 
We now add a perturbation 6V to 

How will k, and k, (i. e., the position E, and the width r of the 

The wave function x k  ( r )  i s  replaced by i ts  logarithmic derivative, 

Using the Sch. Eq., which is satisfied by x k  ( r ) .  we readily find an equation 

(31.1) 

for z k :  

zk ( r )  + z: ( r )  + (P -VI = 0. 

Since for a state of momentum 1 the regular function XA,  behaves for 

irrespective of the small  r a s  a++', where a = const, we have z ( r )+  
potential. 

the position of the quasistationary level shifts k o + k o  + 6ko. 
we obtain for &zk 

r+o 

For  large r ,  this solution behaves a s  elkor and z ( r ) - + i k o .  
r- 

We now introduce a perturbation 6V. zk  acquires an increment 6zk and 
From (31.1) 

(br)' -22&* + 8V - 2484. (31.2) 

Since the l imit  of r ( r ) a s  r 4 0  is independent of k, 8 a  should satisfy the 
boundary condition 

8 4  (0) = 0. (31.3) 

The solution of equation (31.2) satisfying this boundary condition is clearly 

r' [6V ( r ' )  - 2k06koI x:, ( r ' )  dr' 
- 2kobkol exp [2 5 t k , ( r " )  dr"]} dr' = O 

(31.4) 
0 x:. ( r )  

For large r ,  when 
iko and 62 (m) = i6ko gives the correction to the energy and the width of the 

- Ceiknr ,  the logarithmic derivative is always equal to 

This theory was first developed apparently i n  /182/. 
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Ch. 5.  QUASISTATIONARY STATES 

quasistationary state. From (31.4) we have for this case 

i 6ko (Ceikr)l = - 2ko 6ko 5 x", (1') dr' + 5 W x : , ( r r )  dr', 
0 0 

which may be rewritten as 

, 

(31.5) 

Strictly speaking, this expression is applicable only if V and 6V both vanish 
starting with some r = k. 
large r ,  Ce%r = x,, and (b) the upper integration limit can be extended to 
infinity . 
a l te rs  the position and the width of the quasistationary state: 

It is only in this case that (a) for sufficiently 

Expression (31.5) is the solution of our problem. The perturbation 

Expression (31.5) is very similar to the general perturbation theoretical 
There are only two differences: f irst  it  contains expression for level shift. 

the square of the wave functions x",, and not the square of the moduli ) X R , l * ;  

second, the ordinary formula has  the normalization integral 5 I x k  I2dr in the 

geenominator, which is not what we have in (31.5). Note that the integral s IXk,ladr diverges, since the integrand increases exponentially for r + m .  

+he integral &dr is also meaningless according to the usual definition, 

but since the integrand increases for r+m while oscillating, we will 
show how to regularize this integral. It is not sufficient t o  multiply the 
integrand by e-"' and let a go to zero. We can show, however, that 

m 

0 

1 
m m 

(31.6) 

exists, so that the denominator in (31.5) can be treated as a normalization 
integral of the function x s .  :: 

Indeed, as is readily seen, the integral is expressible in terms of the error function 0: 

m m 
(cos 2klr f i sin & = 

0 

Since a + 0, w e  may use the asymptotic expansion for 0: 
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Therefore if we define as the normalization integral the limit 

m m s x:,dr = lim 1 X:,e-ar'dr, 
0 Q-0 0 

we can rewrite (31.5) in the more familiar form 

(31.7) 

(31.8) 

The above definition of the normalization integral for quasistationary 
states i s  quite useful in a number of problems. 
show, for example, how to apply this technique t o  the calculation of the 
coefficient a ,  which determines the intermediate asymptotic behavior of 
the wave function. 

In the next section we will 

S 32. 
FUNCTION FOR f -00 AND t - w  

THE ASYMPTOTIC EXPRESSION OF THE WAVE 

This problem was considered before, but then we were mainly interested 
Now we can concentrate ontheformalaspects.  in the physics of the process. 

We will derive an asymptotic expression for the wave function Cp ( r ,  t )  for 
r 4 00 and f + OQ taking Cp (r ,  0) = (Po (r). 

this method to a spherically symmetric problem where the potential V (r),  
the sought function $I (r ,  t), and the initial function Cp ( r ,  0) depend on r only. 
We introduce a new function Cp ( r ,  s), 

This problem was solved in /183/ by Laplace's method. We will apply 

m 

Cp ( r ,  s) = - s e"' $I (r  * t )  dt. 
0 

Taking s = q + io ,  we find that 

Cp(r, s) = - i  y e f l p ( r ,  t )  6dcttS 5 f ( r ,  t)C'*'ddt, 
0 --oo 

i. e., $I ( r ,  s) is a Fourier transform of the function 

f ( r ,  t )  = - i e - a t $ ( r ,  t )  for t> 0. 
f ( r .  t )  = 0 

On the other hand, for R < r. 

m 

(32.1) 

(32 2) 

(32.3) 

We made use of the fact that the curoff factor e4* in the first integral does not alter the value of the 
integral for a + 0, as the term in brackets is zero for r > R .  
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Ch. 5. QUASISTATIONARY STATES 

Inversion gives f and we find after elementary manipulations 

-+io 

( 3 2 . 4 )  

The integral in ( 3 2 . 2 )  exists for f which falls off as t -+ 00, i. e., fo r  0 >o. 
However, we will also consider $ ( r ,  s) for u < 0; this can be defined a s  the 
analytic continuation of the function Cp ( r ,  s) defined by the integral fo r  u > 0. 

1 
FIGURE 27. 

Consider the Sch. Eq. 

Multiplying by --igst and integrating with respect to time, we find 

(32 .5)  R' - W ( r ,  s) - 2;;; A$ ( r ,  s) + U ( r )  $ ( r ,  s) = - figo ( r ) .  

Here we assumed that for r >  R ,  

lim &*I$ ( r ,  t )  = 0, 

which implies u > 0, i. e., the point s lies in the upper half of the complex 
s plane (Figure 2 7 ) .  

1- 

We further take 

(Po (r) = U ( r )  = 0 f o r  r > R. ( 3 2 . 6 )  

Then, for r > R ,  

(32 .7)  

For u > 0 we define 
the s plane; to ensure single-valuedness, we make a cut along the negative 
r ea l  axis (a = 0, q < 0, s = q + io). 
f i r s t  t e rm in (32 .7)  exponentially decreases  for r + 00 and the modulus 
of the second t e rm exponentially increases.  
defined bya  convergent integral, Cp ( r ,  s) is known not to increase for large r .  
We therefore take 

as the positive root on the positive real axis in 

Clearly, for u > 0 the modulus of the 

But for u > 0, when ~p ( r ,  S) is 

(s) = 0. 
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In other words, if  9 ( r ,  s) is defined a s  the transform of the solution of 
the time-dependent Sch. Eq. and natural restrictions a r e  imposed on the 
initial state I#,, ( r ) ,  we find that 9 (r,  s) should match the outgoing wave 

This conclusion was originally obtained for the upper s halfplane. 
have already noted, in the lower s halfplane the function 9 ( r .  s) is defined 
not by the integral but a s  the analytic continuation of the 9 ( r ,  s) defined in 
the upper halfplane. Therefore, the condition of matching with the f i rs t  
t e rm in (32.7) must be retained in the lower halfplane too. 

A s  we 

The decaying state satisfies the equation 

(32.8) 

and is matched with an outgoing wave for certain E = Eo- X { 2 .  Hence the 
potential U ( r )  is such that equation (32.5) with zero right-hand side has  a 
nontrivial solution for f is  = E. 

(32.5) should have a pole a t  the point t i s  = E ,  i. e . ,  in the lower quadrant 
of the s plane. 

Hence it follows that the general solution of the inhomogeneous equation 

The solution will have the form 

(32.9) 

where cp1 ( r ,  s) is bounded for As = E .  

To this end we multiply (32.5) by g&) and (32.8) by Cp ( r ,  s), subtract one 
from the other, and integrate from 0 to R .  
the range of the potential for tis + E we have 

The problem thus reduces to the determination of the coefficient a.  

Remembering that outside 

we obtain af ter  simple manipulations 

We now insert  
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take the limit a s  As + E and extend the integrals to R = 00, remembering 
that the integrands vanish for  r > R .  All this gives 

m 

where the integral !(rqE)*dr= x:dr in the denominator is understood in the 

sense of expressioi  (31.7) of the previous section. 

from a path bypassing the pole tcs = E :  

f 
Inserting (32.9) in the inversion formula (32.4), we obtain the contribution 

m 

(32.1 1) 
j (rqE (I))'& 
0 

In this form the expression is entirely analogous to the ordinary expres- 
sion derived for, negative real  eigenvalues in a discrete spectrum. The 

m 

scalar  product j r N q E d r  and the norm 5 &rSdr in the sense (31.7) enter  on 

equal te rms  both the perturbation theory and the nonstationary problem. 
0 0 

S 33. CREATION O F  AN UNSTABLE PARTICLE 

Suppose that a pair of stable particles react and a r e  converted to a 
different pair of stable particles: 

a + X + b +  Y .  (33.1) 

How will the reaction change i f  one of the product particles,  say Y ,  is 
unstable and eventually decays, i. e., 

Y - + c + d .  (33.2) 

First it is clear  that for r +  00 the particle Y will never be observed; we 
will only find i ts  decay products. 
three-particle reaction 

Formally we a r e  thus dealing with a 

X + a - + b +  c +  d .  (33.3) 

In what follows we shall see,  however, that this process  may follow 
two distinct courses,  o r  channels 

b + c + d ,  
7 

I 
X + a  

b + Y + b  + c + d,  

(33.3') 
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i . e . ,  with direct formation of the three particles and in two stages,  when 
f i rs t  the reaction produces b + Y and only then does Y decay into c + d .  

A particle-creating physical process can be described in the following 
way. The incoming particles collide and form an intermediate state in 
which the particles a re  rearranged. 
state (reaction radius) is generally of the order  of magnitude of the range 
of the interaction forces between the particles. 
intermediate state decays either into the original reacting particles o r  
into some other,  new particles. The former alternative is the simple 
case of elastic o r  inelastic scattering, whereas the latter case is a reaction. 
The intermediate state can thus be regarded a s  the source of particles 
created in the reaction. 
say,  can thus be formally described by a Sch. Eq. with a source: 

The radius R of the intermediate 

After a certain time the 

The particle creation process in reaction (33 .1) .  

(Hb + H c  + Hd + Ucd-E)'? = Qs (33 .4)  

where Hb, H,, Hd a r e  the Hamiltonians of the free  particles b, c ,  and d,  ud is 
the interaction potential between c and d ,  and Q i s  the source function. 
In general  Q depends on the total energy E ,  but in all the cases  that we 
will deal with this dependence can be neglected. 

In equation (33-.4) for simplicity we ignored the interaction of particle b 
with particles c and d .  
since this interaction is directly responsible for  the very existence of the 
unstable particle Y. 

described by equation (33 .4 ) .  
interaction between c and d to  be such that 

this s ta te  we call  a particle Yo; 

and width r (unstable particle Y ) .  

we assume both Yo and Y to have zero  spin. 
E ,  we distinguish between different processes:  

The potential Uedr however, cannot be omitted, 

We will now derive general expressions for the rates of various reactions 
To cover the main cases, we will assume the 

(a) there exis ts  a bound state of the pair  c + d with energy -e, (e,, > 0); 
(b) there exists a quasistationary state of the pair c + d with energy E, 

To facilitate comparison between creation of stable and unstable particles,  
Depending on the total energy 

1 )  for E < - 4, both reactions are equiprobable from energy standpoint; 
2) for - e, < E < 0, only the reaction with formation of Yo is possible; 
3) if 0 < E  < Eo, in addition to Y, the three particles b + c+d may form 

4 )  the formation of the particle Y is energetically allowed only for E > Eo. 
We will now consider the various cases  one after the other. 
In the center of mass  system, the Sch. Eq. has the form 

in the free  s ta te ,  but the formation of Y is sti l l  forbidden; 

Here r is the distance between c and d .  

p is the distance from b to  the center of mass  of the pair (c+d), 
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and m and p a r e  the reduced masses  

m p d  (mc + m,j) p = -  
mC+md * m =  + mc + md ' 

Using expression (20.2) for  Green 's  function, we write cp in the form 
m 

where G. and GE-L a r e  the one-particle Green's functions 

The wave function cp ( r ,  p) depends on two coordinates. However, it i s  
c lear  that to find the number of creation events of the three free  particles 
b + c + d it is sufficient to find the current of one particle only, say b .  
W e  thus expand cp (r,p) in eigenstates of the pair  c + d .  

The complete system of wave functions of the pair  c + d comprises the 

wave function of the bound state (the particle Yo) -!.-L L ( r )  and the continuum 

wave functions #(r)  normalized to 6 (& - &l). The expansion thus has  the form 
G r  

( 3 3 . 7 )  

where 

( 3 3 . 7 ' )  I 1 i  @ o ( P ) = j ( P ( r * P ) - T  (W, 

@k (PI = 9 (r ,  P) $p'* (Wr .  

The left-hand sides of these expressions can be treated a s  wave functions of 
particle b when the pair  c + d i s  formed in the bound state and in the continuum 
state, respectively. 

Using the properties of Green 's  functions 

m 

we find from ( 3 3 . 6 ) - ( 3 3 . 7 ' )  

from Chapter 4 and the relation 

- GE-. (P, pi), 

Here 
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the asymptotic expressions for p -+ DO were obtained using (18.13). 

the direction of the vector p .  
sufficiently small  so that qR< 1. 

may thus be replaced by unity and the dependence on 

functions @ thus become spherically symmetric. 
sponds to a case when the product particle b is formed in the s-state only. 

The total yield of the reaction producing the particle b and the bound 
state yo of the pair  c + d is equal to  the current integrated over the surface 
of a large sphere: 

In general the amplitudes f o  and fh  depend not only on E and e but also on 
The radius R of the source is assumed to be 

The exponential function in the integrand 

drops out. The 

Physically this cor re  - 

dQ, is the solid angle element in the direction of the vector p.  

relative motion of the particles c + dlies in the interval dk around k is  given by 
Similarly the yield j(R)dR of the reaction in which the momentum of 

Integrating over all the 
de. we find 

j ( k )  dR = 4nu, I f h  I’d&, uq = ;. tc4 

directions of the vector R and changing from dk to 

j ( 8 )  d8 = jim (e) de,  

Here jlm(e) is the reaction yield for a given energy e and given quantum 
numbers I, rn of the relative motion of particles c + d .  

To estimate fy. note that the radius of Yo is of the order -= 

the radial  function ~0 ( r )  normalized to unity is of the order  of (’%)’”. 
The total reaction yield for  Yo is 

Let us  compare the yields of two-particle and three-particle reactions. 

, so that f ‘h 
(-) ko - LPeO 

( 33.1 0) 

Here A. is independent of energy. 

The total energy E is first  assumed to be less  than the energy Eo of the 
quasistationary pair c + d (the particle Y), s o  that the formation of the 
la t ter  is forbidden by energy considerations. 
a r e  thus emitted from the source Q independently. 

in (33.9). 
t e rms  give a negligible contribution. 
in the integrand in (33.9) can be approximately replaced by k R  (where R is 
the radius of the source Q ) .  

Now consider the yield of the three-particle reaction X + a -+ b + c 4- d .  

All the three particles b,  c, d 

At low energies the entire yield is determined only by the term jno ( E )  de 
This is so because xki(rl) - (krl)l+l and for I > 0 the corresponding 

To estimate joo ( E )  de note that X&1) 

We thus get 

137 

(33.1 1) 



Ch. 5. QUASISTATIONARY STATES 

Here A ,  is  the same constant a s  in (33.10), and E, is a constant having the 
dimension of energy. 
mass  p confined within a volume of radius R .  
and in elementary particle physics E, -100MeV. 

Numerically it is equal to the energy of a particle of 
In nuclear physics E, - 1 MeV 

I 

I 
I h!l I 

4 ;  
FIGURE 28. 

The energy distribution of particles in a three-particle reaction i s  
The function j ( e ) i s  plotted by curve 1 in Figure 28. given by (33.11). 

The total yield of a three-particle reaction is  
E 

i= I j ( e ) d e = A o & F .  (33.11) 
0 

We now increase the energy E until it becomes comparable with E, and 
the formation of the unstable particle Y becomes possible. 
loo (E) for E E E, .  
highly sensitive to energy and may reach high values. 
expressions were derived in the preceding (see (27.6) and (27.7)). 
them in (33.9) we obtain 

Let us consider 
The radial  wave function xa0 ( r )  near  the resonance is 

The corresponding 
Inserting 

(33.12) 

We see that jm (E) has a sharp maximum for e -  Eo (curve 2 in Figure 28). 
The resonance factor is responsible for the marked increase of the reaction 
yield a t  E =Eo. 
product is a single quasistationary particle Y, and not two independent 
particles c and d ,  so  that we a r e  in fact dealing with a two-particle reaction. 

is determined from the condition (we take for simplicity e, =E,)  

The physical reason for this is fairly obvious: a t  e c Eo the 

The width de around E = E, where the two-particle reaction is dominant 

Let u s  calculate the total yield jv of particles Y at energy E close to E,. 
To this end w e  integrate (33.12) over E in the  "two-particle" region 
Eo - A E <  e < E :  

(33.13) 
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5 34. TRANSITION FROM QUASISTATIONARY TO STATIONARY STATES 

The energy dependence of the yield is determined by a factor first derived 
in 11841 

The graph of this curve is shown in Figure 29.  

We thus have the following picture. Starting with E = -%. a stable 
particle Y, may form. 
The yield a s  a function of energy is shown in Figure 30. Starting with 
E = 0, the three-particle reaction is turned on (see (33.11)). 
the three-particle yield is very insignificant (- m. Finally for E 3 E, 
the formation of the unstable particle Y begins. 

The reaction yield b + Y, is specified by (33.10). 

Fo r  low E 

§ 34. TRANSITION FROM QUASISTATIONARY 
TO STATIONARY STATES 

It is highly significant that the energy dependence of the yield of the 
unstable particle Y turned to be very close to the energy dependence of 
the pure two-particle reaction with Yo as one of the end products. For  
r +  0 the likeness is virtually complete, Another significant point i s  
that the absolute yields a r e  a lso fairly close to one another. 
the effect of kinetic factors (the final state phase volume), the yields should 
be compared a t  equal distances from the respective thresholds. 
case we have 

To eliminate 

In this 

The analogy between quasistationary and stationary s ta tes  is very con- 
siderable, although a t  a f i r s t  glance they are fundamentally different: 
stationary s ta tes  have a discrete spectrum, whereas the quasistationary 
s ta tes  lie in the continuum; the wave functions of the stationary states 
a r e  localized in a certain region in space, whereas those of quasistationary 
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states a r e  ' 'spread'' over the entire space. In the limit a s  r +  0, however, 
a quasistationary state should go over to a stationary one. Physically this 
i s  obvious. 

The most characteristic feature of wave functions describing quasi- 
stationary states is that they have an exceptionally high magnitude inside 
the potential range (this has been discussed before, see  ( 2 7 . 7 ) ) :  

We wil l  now t ry  to go into the formal side of the matter. 

(34.1) 

C ( k )  = 1 f ( r ' )  x h  (r') dr' 
0 

For example, for radium R -10-12cm, decayenergyE,- 10MeV =. 10-5erg,  
lifetime TI,,= 5000 years  (i. e., r -  10-38erg). F o r  E = E ,  this formulagives 

X i d r  = 1010 cm. a 
To give a rough idea of the staggering value of this integral, it suffices 
to mention that in the integral of the square of the modulus of the a-particle 
wave function over a volume with a radius of 10 light yea r s  

10 hght years 

the dominant contribution i s  f rom the central core  r < 10-12cm. 
when integrating over a sphere with a radius greater than 1015 km- lOOlight 

years  that the "outer" part of the wave function having the form 

starts making a noticeable contribution, 
Since any integral used in practice (even if formally taken between 

infinite limits) implies integration inside a much smaller radius (of the 
order of interatomic distances, say), it is clear that the wave function 
"tails" extending to infinity a r e  ignorable. In this sense, the wave function 
of the radium nucleus i s  actually localized within a volume of lo-'' cm radius, 
although formally it i s  a continuum function and "fills" the entire space, 

Another manifestation of the large value of xk in the resonance region 
(or ,  equivalently, of the long lifetime of the quasistationary state) i s  the 
form of the energy spectrum of the particles b + c + d for  E >E,. 
c + d may have any energy between 0 < e < € ,  but in practice, as we have 
seen in the previous section (see Figure 28), a considerable fraction of 
particles a r e  created almost with the exact energy of relative motion E = E,. 

The analogy between quasistationary and stationary states can be 
formulated in more exact t e rms .  

Consider a function f ( r )  which increases sufficiently fast with increasing 
r .  We expand it in eigenfunctions Xk ( r )  of the Sch. Eq. with a potential 
which has  a quasistationary level (see Figure 18) a t  k = k,. 

The expansion coefficients C (k) a r e  given by 

It is only 

sin (kr + 6) 

Formally 

m 

(34.2) 
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5 35. COLLISION TIME 

The contribution from the interval 0 < k < no to this expansion is 

(34.3) 

The main contribution to this integral comes from the region R = 4 and 
r < R. In this region we may write (see § 27) 

xk ( f )  A (k) x';) ( f ) ,  (34.4) 

where x(;) is not very senritive to energy. Therefore (34.3) can be written 
in the form 

where we used the explicit expression for A (R):*  

Since A* (k) has a sharp maximum at E = E,, we approximately have from 
(34.6) 

A' (k)  6 fk - $). 

In this approximation the expansion of any function 

m m m 

has a form which as i f  corresponds to a continuous spectrum beginning 
only a t  k = x o ,  whereas in the interval 0 < k ( x ,  there is a single stationary 
state %(O)(r). 
character of the formula (34.4), but the corrections become smaller as r 
decreases and as the range of the function f (r) shrinks.) 

stationary states a r e  entirely equivalent is the formal reason for the great 
similarity of these two kinds of states. 

(This is an obvious idealization associated with the approximate 

The fact that in various expansions of the form (34.7) quasistationary and 

§ 35. COLLISION TIME 

The treatment of lifetime of quasistationary states has so far been 
largely intuitive. We will  now go into this question more rigorously. Con- 
sider the following problem /185/: a particle of given energy E is scattered 
by a potential V of range R .  What is the mean time T (E, a) that the particle 
spends inside a sphere of radius r = a. a > R? 

As is usual, the functionxfks normalized by the condition 

R 5 I x f ) I a d r  = l .  
0 
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Ch. 5. QUASISTATIONARY STATES 

We have to devise a mechanism which would function a s  a clock ticking 
off the time that the particle spends inside a sphere of radius r = a .  
following "clock" mechanism can be proposed: suppose that inside the 
sphere r = a  there is a weak homogeneous magnetic field H directed along 
the z axis, which is zero for r > a ,  and let the incident particles have a 
magnetic moment p. Let further, the incoming particles be polarized 
along the x axis (so that their  magnetic moments are aligned along the 
x axis). As long a s  a particle stays outside the sphere r = a, there a r e  
no forces acting on the magnetic moment and i ts  direction does not change. 
However, a s  soon a s  the particle enters  the sphere r < a, where a magnetic 
field is present, the magnetic moment will s ta r t  precessing about the field 

vector with a frequency o =y. (The change of particle energy due to the 

interaction -pH is negligible for small  H.) The precession will go on as 
long as the particle remains inside the sphere r = a. 
particle spends inside the sphere is T, the magnetic moment will have 
rotated through an angle 8 = TO in the xy plane by the time the particle 
emerges from the sphere. 
moment of the scattered particles, we can readily compute the mean time 
that the particle spends inside the sphere r = a. 

The 

If the time that the 

Thus, given the precession angle of the magnetic 

The results give 

(35 .1 )  

To derive this expression, le t  u s  calculate the precession angle 6 of the 

When a magnetic field is turned on, the Sch. Eq. takes the form (for 
magnetic moment. 

simplicity we only consider the case 1 = 0 case) 

(35 .2)  

The term in the right-hand side describes the interaction -pH, since 
by assumption the vector H is directed along the z axis and p inevitably 
has the form p=2t(6, where s is the particle spin vector, * taken equal to ' I2, 
we have 

where uZfs  the Pauli matrix. 
function x is to be understood as the column 

Since the particle spin s = 'I2, the wave 

where x1 and x, describe the two states with respective spin projections of 
+'I2 and on the z axis. 

The spin vector e is the only pseudovector characterizing a particle at rest. The pseudovector p must 
therefore be proportional to e. 
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5 35. COLLISION TIME 

The problem is solved by perturbation theory. The zeroth-approximation 
wave function i(') by assumption describes a state with p directed along the 
JC axis. This function is 

where Xr ( r )  is the solution of the homogeneous equation (35.2). which has 
the asymptotic form 

xr (r) - fi sin (kr + 8). 

The solution of equation (35.2) is sought in the form 

To f i rs t  approximation we have 

. % W # '  ( x  ) + (P- v) io = -$ &p. 

Writing separate equations for the two components, we obtain 

anc 1 (x!V+(k' -WxX,n,=--pH z x , C r ) ,  

2m i x, (1)" + (k' - V) - s p H  1/2 XI  (1). 

Using Green's function, we write the solution in the form 

Gk ( f ,  f l )  X k  ( f l )  &I - 
j x: (I$ d r l =  

2m .- pH i <+ f #r+W 
fi 0 

Collecting all the formulas, we obtain the following asymptotic expression 
for the solution of equation (35.2): 

The first  t e rm in braces describes the incident particles and the second 
te rm describes the scattered particles. 

The mean values of the Let us calculate the spin precession angle 8. 
spin x and y components a r e  (in calculations w e  ignore te rms  -pa - " ) 

0 - i  1 + i B  
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Ch. 5 .  QUASISTATIONARY STATES 

The absolute value of the precession angle i s  thus 0 = 28 and for  the lifetime 
we easily find by (15.18) 

which was to be proved. 

for the phase in (35.1) and dropping all  t e rms  apart  from the leading te rm,  
we obtain 

Let us  now return to quasistationary states.  Inserting expression (27.4) 

= nr (35.4) 
( E  - E@)P + r8/4 * 

This result confirms our previous conclusion concerning the mean 
lifetime of a quasistationary state and the dependence of this lifetime on 
the exact particle energy. 

Expression (35.1). a s  we see from i t s  derivation, corresponds to  the 
a v e r a g  e t ime T that the particle spends inside the sphere r = a.  
would therefore seem that the actual time T that the particle spends in the 
region r < a i s  not a deterministic quantity, and there is in fact a certain 
distribution of these t imes W (7'). 

It is readily seen, however 11861, that this distribution has the form 
of a 8-function, W (7') - 6 (T - n. The time T is thus a fixed quantity for 
a given energyEI 

Note that this in no way clashes with the uncertainty relation A€- At>h.  
Indeed, examining the motion of wave packets, we readily conclude that 
the At here is the uncertainty at  the exact collision instant. 
relation whatsoever to the d u r a t i o n  of collision. 

It 

It has no 

§ 36. OTHER TYPES OF LONG-LIVED STATES 

It would be wrong to suppose that the resonance states dealt with in this 
chapter constitute the only type of relatively long-lived states of a particle 
which lie in the continuum. There a r e  a t  least  two other types of states 
("virtual level" and "threshold state") whose lifetimes may considerably 
exceed the characterist ic time of flight 11871. 

the case of a f ree  particle moving with orbital momentum I = 0 relative to 
the origin. According to the general expression (35.1) such a particle 
remains inside a sphere of radius R during the time 

Before we can proceed with a discussion of these states,  consider 

(36.1) 

If RR > 1, i. e., h < R ,  where h is the particle wavelength, the second 
t e rm in braces  can be dropped in comparison with the f i rs t  t e rm,  and 
we obtain the classical  result  

2R Tf, = T,, = u. 
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The time T is equal to the time of flight of the particle through the sphere, 
and the trajectory passes  through the center of the sphere. 

The situation radically changes i f  RR & 1. In this case the wavelength h 
is comparable with o r  greater  than the sphere radius. According to 
quantum mechanics, a particle may have I = 0 without actually passing 
through the point r = 0: it is sufficient that the particle be at a distance of 
the order  h f rom the origin. Therefore the t ime the particle spends inside 
the sphere r = R should be l e s s  than the classical  time of flight TC1. Indeed, 
by (30.1) we have for  kR( 1 

(30.1 ') 

Now suppose that a particle moves in a potential field with a virtual level 
(or  a real level) with low binding energy. In this case the expressions of 
S 3 are applicable ond the scattering phase 6 is obtained from the equation 

&rots=-$, (36.2) 

where the constant a. is the scattering length, For  a < 0 there is a virtual 

level with energy and for a > 0 a rea l  level with binding energy p. 
Solving (36.2) for the phase 8 and inwyting the result in the expression for 
lifetime (35.1), we obtain for small  M(laf)lR) 

M A' 

The dependence of T on particle energy ( o r  more precisely on k) is shown 
i in Figure 31. We see that the lifetime T vim has a peak at  k - - and l a l '  

near this maximum it is greater than the classical time of flight. This is 
the result of the attractive action of the potential. The attractive effect is 
particularly pronounced i f  we compare Tvin with the time Tf,, (36.1'), that 
a free particle remains inside the sphere r = R .  The time ratio 

may reach very high values for k-. 0. 
for the triplet neutron-proton interaction (a = 5.4 
=: 12; for the singlet interaction ( a  = - 20.10-13cm) this ratio is even higher 

Taking R -  2.5-10-13cm, we obtain 
cm) a time ratio of 

(z 200). 

FIGURE 31. FIGURE 32. 
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A "virtual level'' is thus not simply a convenient mathematical fiction 
but a rea l  physical state of the system in which the particle spends a 
considerable length of t ime inside the potential. 

states"). In Chapter 7 we will show that in case of a reaction 
There is another extensive class  of relatively long-lived s ta tes  ("threshold 

X -k a +  b f Y, (36 .3)  

the phase 8 of the elastic scattering (X 4- a -). X 4- a) on approaching the reaction 
threshold from below behaves as 

where 6, and a a r e  some constants and E,is the threshold energy. 

phase derivative goes to infinity as E approaches The lifetime 

therefore steadily increases  on approaching the threshold point from below 
(Figure 32). 

In principle other kinds of long-lived states a r e  possible, such as s ta tes  
corresponding to multiple poles of the S -matrix / 188 - 190/. 

The 
d& 
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Chapter 6 

FUNDAMENTAL PROPERTIES OF 
M ULTIC HANNBL SYSTEMS 

0 37. 
MULTICHANNEL SYSTEM 

THE WAVE FUNCTION OF A 

We have so iU: daorlt witb particles in a potential field. The only 
physical p r g c e h ,  tikt an be idmtifbd* with this idealized situation is 
elastic scatte-. As WQ know, any collision problem involving two 
particles with an interaction descrfbable by a potential U (rr - r,) can be 
reduced to  the scattering of a particle off a potential. 

Besides the simple case of scattering, we often have to deal with reac- 
tions, which convert incoming particles into different particles. Consider 
for example the following situation. We s ta r t  with N pai rs  of particles 
ai + X I  ( i  = 1, 2, . . . , N) which can transform into one another (whenever this 
transformation does not clash with energy conservation): 

ai + Xi C' aj + Xi. (37.1) 

The total mass  of each pair  will be denoted Mi = m,, 4- mx, and let M I  < M, < 
. . . < M N .  In all  the cases  of physical relevance the interaction between 
particles is represented by short-range forces, Le., it  is ignorable for  
r >  R, where R is the interaction range. Thus, in what follows, reactions 
(37.1) a r e  assumed to be confined inside the sphere r < R .  We thus a r r ive  
a t  the following picture. In the outer region (r > A ) ,  the most general 
wave function of the system should have the form 

1 (37.2) 

where 0 (ai) and 0 ( X i )  a r e  the interior wave functions of particles ai and X i  
(in general, these may be compound particles), ai and pi a r e  some constants, 
Cp'? and g(:) a r e  two independent solutions of the Sch. Eq. for the pair 
ai + X i  in the outer region r > R  (we have assumed that the transitions 
between particles a re  possible only in the interior region; in the outer 
region, ai and Xi  a r e  coupled only by long-range Coulombic o r  centrifugal 
potentials and the particle motion is thus described by the usual Sch. Eq.) 
For  simplicity, we consider spinless particles and only states with 
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definite I. 
conditions (only the radial part  is considered): 

The wave functions g'f' a r e  henceforth normalized by the following 

uncharged 
particles, ( 3 7 . 3 )  

Here Vi is the relative velocity, kI is the wave vector, r i  is the distance 
between ai and X I .  This normalization corresponds to unit current through 

What is the form of the wave function 
the surface of a large sphere. 

I / /  for various energies ? To answer this 
e question, we s ta r t  with the physical 

a yc* 4'' %'* ' * *  requirement of bounded 9. Consider 
the energy range M# > E> M,c' (I in 
Figure 33). If M# is adopted as the 
zero point of the energy scale,  then 

FIGURE 33. 

writing Qi = (Mi - Ml)8 for the difference in the res t  energies of the 1st and 
the i-th pair ,  we obtain for the wave vector of the i-th pair in (37.3)  

In interval I (E  < Q,), all  4 a r e  imaginary, ki = i I kll ,  except k, which is 
real ,  
at  infinity, q';) (j > 1) fall off exponentially, and $(;)are everywhere bounded 
for  r > R .  

Therefore all the functions g$) with j > 1 increase exponentially 

The boundedness condition a t  infinity can thus be satisfied only if we take 

ai = 0 (i > 1).  ( 3 7 . 5 )  

In this case Y for r > R should have the form 

(37.6) 

i. e., it contains an incoming and an outgoing wave of the pair a, + X ,  (the 
f i rs t  term) and a sum I: which describes the exponentially decaying func- 
tions of the other channels. 
for E < Q,, o, and X1 a r e  the only particles which may escape to infinity, 
whereas all  the other pairs  ai + X I  ( i  > 1) cannot exist in the free  state since 
the energy is insufficient; they a r e  only virtually created in the interior 
region and slightly "stick out" into the exterior region (this is  described 
by the decaying "tails" in the second te rm in ( 3 7 . 6 ) ) .  

The only physical process  which may occur at  energies E <  QI is thus 
elastic scattering of the particles a, and X , .  In any theory the wave function 
of elastic scattering should be completely determinable by the amplitude of 
the incident wave, in our case  the coefficient a,. 
write this result in the form 

Physically it corresponds to the following case: 

Dividing (37.6) by a,, we 

N 

h l  
Y1 = qpD1- 2 S i 1 q j w I .  (37.7)  
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Pi Here Srl - a r e  entirely determined by the Hamiltonian of our multichannel 
9 

,system. They are naturally functions of energy. We can find them only if  
t h e  wave function in the interior region is known; matching the wave function 
and i ts  derivative at  r = R with (37.7), we obtain an equation for  SI,. 

By the law of cmeerva t im  of the number of particles, the 
amplitudes of the incident and the outgoing wave should be equal. 
directly leads to the familiar equality 

This 

IS,l= 1 for O < E <  Q,. 

The other coefficients S, are quite arbi t rary between certain l imits I191  I .  
We now increase the energy 80 that 0 < E  < (11 in Figure 33). In 

this range, @ with I >  2 is divergent at infinity, whereas the functions 
q?, (pl*, and #,-are bounded everywhere for r > R .  Therefore the bounded- 
ness condition for the wave function at  infinity now leads to the condition 

, * P O  for r > 2 .  (37.8) 
1 

The amplitudes t?f the incomingwaves of the first two channels a, and tm can 
be selected quite arbitrari ly.  One independent solution is obtained by 
taking, say. a, = l ,a, = 0. The second solution can be defined by a, = 0, 
a, - I .  The physical meaning of these solutions i s  quite clear. The former 
(it has the same form as (37.7)) corresponds to an experiment in which a, 
and X ,  collide (an incoming wave is observed in one channel only); their 
collision may result in elastic scattering, described by the amplitude S,,, 
o r  in the reaction a, + X, 4 a, + X,, described by the amplitude S,, in (37.7). 
All the other particles with i>  2 may form in the interior region, but they 
cannot escape to infinity for lack of energy (one often says that these 
channels a r e  closed). Similarly, the solution with a, = 0, a, = 1, 

(37.8) 

describes physical processes which take place when the particles a, and X ,  
collide; SI, determine the interaction between particles in the entire space, 
including the interior region. 

We thus come to the conclusion that for Qo < E  < Q8, where two channels 
a r e  open (i. e., where the energy is sufficient for the existence of two 
pairs  of particles, a, 4- XI and a, + X9), our system has two independent 
wave functions satisfying the appropriate boundary conditions. Clearly, 
there are two and only two independent solutions, since if  there were more, 
we could add them to Y, and Y, and thus find several different solutions 
with the same amplitudes ai of the wave functions qf). In this case the 
process would not be determined by the amplitudes of the incoming waves, 
i.e.,  in other words, the theory would not provide a single-valued descrip- 
tion of particle collisions and thus would not be a complete theory. In any 
physical theory the number of independent solutions satisfying the boundary 
conditions is precisely equal to the number of open channels. 

Now proceeding by analogy we can easily guess that further increase 
of energy wi l l  increase the number of independent solutions: for  QI < E  < 
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we should have three independent wave functions, say Yl, Ya, and a new 
function 

For  Q, < E <  Qb we should have four independent solutions, etc. 
for Qm< E < Qmtl, there  are m independent wave functions, which can be 
taken in the form 

In general, 

(37.10) 
m N 

y, = %+@, - 2 S,,*C;Qi - 2 S & + ) O k  ( j  < m). 
[=.I k=m+i 

The first te rm describes the incident wave of the particles a1 + X I ,  the 
second t e rm describes the outgoing waves of the particles at + Xi  ( i  < m). 
whose creation i s  not forbidden by energy considerations. Finally, the 
third t e rm describes the exponentially decaying "tails" of the particles 
ab 4- Xk (k > m), which are formed virtually in the interior region but Cannot 
escape to infinity for lack of energy. 

by the particle interaction. The most significant amplitudes are the St, of 
the open channels, since in t e rms  of these amplitudes w e  can express  the 
scattering and the reaction c ros s  sections (this will be shown in what 
follows). These coefficients constitute the so-called scattering matrix SI, 
Si1 ( i ,  j < m) (o r  S-matrix).  It has  m rows and m columns, and i ts  o rder  is 
thus precisely equal to the number of open channels. A s  a new channel is 
opened, the order  of the S-matrix increases by one. The most general 
wave function has the form (we write out only the part  corresponding to 
open channels) 

The coefficients Si/ - the amplitudes of the function 99) - are determined 

m 

a/*j-)Q,- a, 2 = 
1-1 1-1 

(37.11) 

Instead of writing the wave functions at of the channels, we will agree to 
write Y in the form of a column of m numbers: 

(37.12) 

where the f i rs t  row i s  the wave function of the particles of the f i rs t  channel, 
the second row describes the motion of particles in the second channel, etc. 
Introducing square m x m matr ices  

( 37.1 3) 
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and columns of coefficients before outgoing and incoming waves 

(37.14) 

we may write the matrix (37.13) in the form 

(37.15) 

The relation between thelmatrices and 6, describing the amplitudes 
of incoming and outgoing waves, ia entirely determined by the S-matrix, 
which thus contains all the information on the interaction properties of our 
system. In more precise teSme, the situation is a8 follows. In case of 
potential scattering, the S-matrfx degenerates t o  a set of numbers Sf = t?l(*). 

In this case i t  has been proved / l l S /  that the values of all the scattering 
phases 8, (&) in th& entire energy range 0 < k < m completely descr,ibe the 
potent$ial, i. e., )tpF: u Ict_q .bir{&} a c W y  contab all the information 
on system properties. 

In multichannel systems. however, the analogous theorem has never 
been proved, although it seems to  be self-evident. We should moreover 
stress that actual recovery of the system Hamiltonian from scattering 
data involves very substantial difffcultiee, partly of pure mathematical 
nature and partly due to the %Pact that we mnst know all the S-matrix 
elements a t  all energies. Extraction of this information from experimental 
data -the so-called phase analysis -requires extremely delicate experiments. 

Also note another point. The general expression (37.2) shows that for 
r > R there is a total of 2N independent solutions corresponding to the 2N 
constants ai and PI.  
tinued into the interior region. Consider the energy interval Q1 < E < Q,. 
Here, a s  we know, there is only one physically acceptable solution. 
The conditions at infinity impose (N- 1) constraints (37.5). One constant 
a1 can be arbitrari ly chosen, since it corresponds to the normalization 
of the wave function. These a r e  the 
constraints imposed on the wave function in the  interior region. Thus, 
the number of boundary conditions in the interior region is equal to the 
total number of channels: if  there is but one channel, this condition 
requires that the wave function be bounded at r = 0. In case of N channels, 
the wave functions of all  the channels should be regular, and this provides 
the N conditions in the interior region. 

Each of these 2N independent solutions can be con- 

There thus remain N constraints. 

J 38. CROSS SECTIONS. THE UNITARITY 
OF THE S-MATRIX 

The S-matrix formalism is treated in considerable detail in /192/. 
We wi l l  therefore discuss here  only the simplest case of spinless particles. 
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Let the energy be between Qm < E  < Qm+l. We consider the processes  
taking place when the two particles a1 and XI collide. 
sponding to the particle pair  al + Xp in the wave function of this process is 

qq-’ - S//q$+) = (q-’ - qp) - (SI/ - 1) qlp (38.1) 

Here, a s  in 

The amplitude of the scattered wave is SI / -  1, and the scattering 

(38.2) 

The term cor re-  

(in matrix notation, this is the t e rm occupying the j-th row). 
Chapter 2, the f ree  motion function is enclosed in the first  pair of paren- 
theses. 
c ros s  section is 

011 = -3. (21 + 1) I SI1 - 1 I*, 5 

where the factor + ( 2 1 +  1) is associated with the fact that the plane wave 
k1 

normalized to a current of 1 particle/sec .cm2 contains an incoming 
component $$’ YI, (0, (p) with amplitude 

- (- 1) p’ m, (38.3) 
k/ 

and the outgoing current is thus 

The above expression for the scattering c ros s  section has the same form a s  
for potential scattering. 
systems the matrix elements ISll( < 1 so that the scattering phases a r e  
complex. 

Let us now compute the c ros s  section a, of the reaction XI (al,@) X I ( i # j ) .  
For  unit current (1 particle/sec .cm2) of colliding particles,  the outgoing 
current of the pairs  ai+Xi through a sphere of large radius is equal by definition 
to the creation c ros s  section of these particles, 

The only difference is that for multichannel 

(38.4) 

Expressions (38.2) and (38.4) can be combined, writing the c ros s  section 
of the reaction Xi (al,al)Xi in the form 

(38.5) n 
all = - (21 + 1) I SII - 811 I*. 4 

where 611 is the Kronecker delta. 

a r e  described in t e rms  of the S-matrix elements. 
properties of the S-matrix is therefore of fundamental importance. 

they satisfy certain constraints. 

The above expressions show that the c ros s  sections of all the processes 
A study of the general 

We will first show that the elements of the S-matrix a r e  not independent: 
It is clear  from physical considerations 
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that in any physical process the totalnumber of particles should be conserved. 
In other words, whatever the actual superposition of the wave functions 

I - Xu,T/, (38.6) 

the sum of the particle currents converging at the origin should be equal to 
the sum of the outgoing currents. ’ The total incoming current according to (37.11) and (37.12) is 

I )  = , p l r .  
and the total outgoing current (me (37.11)) ie 

These currents  should be equal for any values of the conatante at. Equating 
the expression. in It, and , f@j for the same products q*, we obtain the 
constraints imporad ai dre S%&fifx: 

(38.7) 

A matrix whose elements Su satisfy (38.7) is called a unitary matrix. 

of the S-matrix. In matrix form, this CQnditiOn is written as 
Thus, the law bf particle number conservation leads to the unitarity 

3+$ = 1, i.e., SI = $1, (38.8) 

by where $+ is the Hermitian conjugate, i. e., a matrix obtained from 
taking the complex conjugate of the transpose. 
one-channel system, (38.8) reduces to the well-known condition 

In the simplest case of a 

S*S = 1. 

S 39. TIME REVERSAL. THE SYMMETRY 
O F  THE S-MATRIX 

The l aws  of classical mechanics allow time reversal. This statement 
should be interpreted in the following way. Consider a system of N 
particles whose motion is described by the coordinates and the velocities 

XI (0; 91 (0. (39.1) 
I 
I At some time t = 7‘ we ar res t  the motion of all the particles and make them 

move in the opposite direction with the velocities 
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If this is done, the system will go through a reverse sequence of all the 
stages of its previous evolution, i. e., the coordinates and the velocities 
for t > T will be given by 

X i  (T + 'C) = X I  (T - T); 9; (T -k 2) = - Vi (T - ?). (39.2) 

To prove this proposition, it suffices to consider the equations of motion. 
They have the form 

(39.3) 

where F a r e  the interparticle forces. 
case  of forces which only depend on the relative position of the particles. 
If (39.1) is a solution of these equations, direct substitution shows that the 
functions 

Here we consider the simplest 

0; (9 = - ut (-0; x; (0 - X I  (-0 (39.4) 

are also solutions of the equations of motion (39.3). 
reversibility of time in classical mechanics. 

follows /193/. 
found from the equation 

This proves the 

In quantum mechanics the problem of time reversa l  is formulated as  
A wave function cp (n, f )  of an evolving process should be 

where x is the se t  of all the coordinates describing the system. At a time 
f the probability density and the mean momentum a r e  

(39.6) 

The principle of time reversibility states that, in parallel with any 
process described by the function (I ( x ,  t ) ,  there must exist a reverse  
process with the wave function $rev(x, t )  such that 

Let us find the form of (Prev. Substituting - t  for t in (39.5) we form the 
complex conjugate of the resulting equation. 
the form 

Equation (39.5) thus takes 

ifi ag' ( x .  dt - 4 - H.9. ( x ,  - 0 ,  (39.8) 

(39.9) 

is a solution of the starting Sch. Eq. (39.5). 
the reverse  process. Indeed 

This new solution describes 

( 3 9.1 0) 
WOtre&,f)= I$* ( x ,  +)I* = w ( x ,  -4, 
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a Here we made use of the fact that by definition 2, = -ilE z, so that >*--a, 
and the mean p Q  is real. 

process with the wave Punction gFQ, 1). A necessary condition for the 
existence of reverse  procesr  is that the Hamiltonian be real:  

Thus. for every process 9 (x, t) there is a corresponding reveree 

A'=&. (39.11) 

F o r  a system of N spinless particles with the usual potential interaction 
forces  between them this condition is always satisfied, since the total 
Hamiltonian 

W 

is real. 

magnetic field, TW kWic ent4rgg operator in thtc caee is 
Some ComplicqUpa devftlap $@ the case of charged particles in a 

where A is the vector potential of the field satisfying the usual condition 
div A = 0. F o r  ? we thus have 

Clearly, in distinction from th t  case of an electric field, the reversal  of 
the direction of particle motion must be accompanied by a reversal  of the 
sign of the magnetic field o r ,  equivalently, a reversal of the sign of the 
vector potential. The time reversal  operation should therefore contain 
complex conjugation and sign reversal  of A (or  If). We see from the 
expression f o r  ? that the Hamiltonian is invariant under this operation: 

fi (A)  = A* (-A). (39.11') 

For  a wave function qrev(f) which describes a time-inverted process we 
obtain as before 

Srev(0 = q* (4). 

Further complications a r i se  when dealing with particles which have 
spin. Consider a particle with spin of 'I2. 
by a column matrix 

Its wave function is described 

where the upper and the lower component correspond to the states with 
SX = and s, = - respectively. The mean spin components a t  point x 
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we end up with a different spin state: 

On the other hand, when the direction of particle motion i s  reversed, the 
angular momentum should change i ts  sign. This is a general property of 
any angular momentum vector, the spin vector included. This condition 
is met by the function 

For  the mean values of the various spin projections in this state we obtain 

s i ( t ) = - s , ( - t ) ;  s ; ( t ) =  - s u ( - f ) ;  s ; ( t ) = - S , ( - t ) .  

The function 'p also satisfies the other reversibility conditions: 
the probability density a t  a point x 

wICv(x, t )  = (qIev(x, o+$Iev(x, t )  =   IS,^ + 1%131= w ( x .  -Q 

$rev(X, t )  = GU$* ( x ,  4) 

thus has all  the properties required of the wave function describing a time- 
reversed process. From the equation for $ ( x ,  t ) ,  

we obtain an equation for 
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Therefore, in order for  grev to be a solution of the Sch. Eq., or  in other 
words for the reverse  process to exist, we must have 

f i  (A) = -4 ( -A) *., (39.11") 

(if  there is an external magnetic field, the field sign should be reversed 
when the complex conjugate of the Hamiltonian is taken). 

If & does not include the particle spin operator, bV,and 9 commute: 
in this case the conditions of time reversibility reduce again to (39.11) 
and (39.11'). If is dependent on spin, it requires special treatment. 
It is readily seen that an interaction of the form OH and 01, where H is 
the magnetic field and E is the orbital momentum operator, satisfies 
condition (39.11"). 

This condition is not met by t e rms  of the form oE, where E is an 
electric field. * The presence of these t e rms  in the Hamiltonian indicates 
that the particle has an electric dipole moment d -0 .  Thus, as Landau 
first  pointed out /1@4/, an immediate consequence of time reversibility 
is that a stable par;ticle cannot' have an electric dipole moment, This was 
the state of things up to 1964, when we had no experimental indications (or  

time, 
in kaon decay experiments 1941 came as a complete surpr ise  to the 
scientific world. Since there is no exact invariance under time reversal ,  
a stable particle with spin (e. g., a proton or a n  electron) in general should 
have a small electric dipole moment. 

imposed on the S-matrix by time reversal .  
written in the form 

* theoretical pointere) even of a remote possibility of nonreversibility of 
Thus, the discovery in 1964 of a weak breakdown of time reversibility 

After this brief digression, we proceed to consider the constraints 
The ordinary Sch. Eq. can be 

H1p (4 = E 9 (4. (39.12) 

Since the Hamiltonian is real, taking the complex conjugate we find that, 
in case of real  energy, 1p* ( x )  is also a solution of equation (39.12). (We 
are  dealing with spinless uncharged particles.) This consequence of the 
time reversal  principle reveals some important properties of the S-matrix. 

multichannel system in matrix notation can be written in the form (see (37.15)) 
The asymptotic expression for the most general wave function of a 

(39.13) 

On account of time reversibility, the complex conjugate function 

qY - [$" - p 3 7  (39.14) 

is also a wave function pf our system, i. e., apart from a constant factor, 
it should coincide with '4. 
tudes of the incoming and outgoing waves should be the same for both $* 
and Y. Right-multiplying by the expression in brackets in (39.14), 
we obtain 

+*-I$-) - $+) (3-1)*, . 

In other words, the relation between the ampli- 

(39.13') 

These terms may arise only in a theory where parity is nor conserved, since E is a polar and u a n  axial  
vector, so that UE changes sign on inversion. 
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The relation between the amplitudes will be the same a s  in (39.13) if 
= s. On the other hand, we know from (38.8) that 3-1=3+. 
recalling the definition of the matrix 3+, we finally obtain 

= 
Therefore,  

(3-1)* = (F). = s,, = 3, (39.15) 

where A,, is  the transpose of 3 ( S i / + S I i ) .  Since by (39.15) the 3-matr ix  
i s  not affected by transposition, it is a symmetric matrix (with S,l = SI , ) ,  
so that 

3+ = 3’ = 3-1. (39.16) 

Time reversibility thus leads to a symmetrical  scattering matrix. 
In some problems, the asymptotic expression of the wave function is 

conveniently represented not as a superposition of incoming and outgoing 
waves $I*) but in the form of standing waves 

(39.17) 

To change over from a system of wave functions (37.13) to a system of 
standing-wave functions, we introduce the diagonal matrices 

cp A L ( l )  - -7 ($(t) + +(-)) and $3) = & ($(+) - ,$(-)). (39.17’) 

We can now express  I$& in te rms  of 
expression in the general wave function (39.13). 

and and insert  the resulting 
We find 

y = [cp‘”(I - . $ - p l y 1  + S)]& [ p ’ - p R ] ; ,  (39.18) 

(39.19) 

and i i s  a new matrix of arbi t rary coefficients related to the amplitude 
matrix 6 of the incoming waves by the equality 

; = (1 -3);. ( 3 9.2 0) 

k is generally called the K-matrix and in our standing-wave represen- 

The K-matrix has a number of important properties 
tation it replaces the >-matrix derived in the representation of incoming 
and outgoing waves. 
which follow from the unitarity and symmetry of the S-matrix. 
derive these properties, we right-multiply (39.19) by (1 -3s) and take the 
Hermitian conjugates of the two sides. 

To 

This gives 

(1 = (1 + 3+) (-i). (39.21) 
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Further seeing that s+ = S-l, we left-multiply th i s  equality by 3 and find 

1 

(39.22) 

I? is thus a Hermitian matrix. 
As the S-matrix is symmetric. we have 

s=s'. ( 39.2 3) 

Taking the complex conjugate of (39.21) and using (39.22). (39.23), we obtain 

(1 -S>@- f (1 + &, 
i. e., 

R"=R*=R. (39.24) 

In other words. the K-maWx is a real and symmetric matrix. It is this 
simple form of the particle number conservation and the t ime reversibility 
conditions that makes  the standing-wave representation particularly attractive. 

Any real symmetric m x m matrix has independent real  matrix 

elements. The K-matrix is determined by the interaction between the 
particles. We may therefore say that the form of the wave function outside 
the interaction range depends on the particular interaction only through 

mq) real  parameters. These parameters a r e  naturally functions of 

energy . 
If we use the standing-wave representation, these parameters a r e  the 

"'": ') independent matrix elements of the K-matrix. On passing to the 

representation of incoming and outgoing waves, the number of independent 

parameters remains a s  before, since the S-matrix is uniquely 

expressible in t e rms  of the K-matrix. Indeed, from (39.19) we have 

3 = (iR+ 1) (lit- 11-1. (39.25) 

Finally note that there a r e  certain restrictions on the energy dependence 
of the S -matrix elements /191/. We wi l l  not give here the corresponding 
expressions, since they do not have any use, 

40. SOME ANALYTICAL PROPERTIES OF 
THE S-MATRIX 

Consider a multichannel system at + XI ( i  = 1,2,. . . , N) . Let kl be the 
wave vector of the light pair a, +XI, xilthe values of kl for which the i -th 
channel is open: 

a'.: 
2mI QI* -= 
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In the complex k, plane, the points x,, x,, . . . , x,, correspond to branching 
points of the S-matrix elements. 
matrix depend on the wave vectors ki of the particles in all  the channels, 
and not only on k1: 

Indeed, the elements Si, of the scattering 

This is most apparent from the fact that the elements Sf ,  a r e  found by 
matching the "interior" with the exterior functions, whereas the la t ter  
(#*)) contain ki and not the total energy. 

Thus, in order  to make S,, a single-valued function of the complex 
variable k,, we have to introduce cuts in the k, plane; these cuts will be 
drawn a s  shown in Figure 34. 
there  is only one solution which is regular in the entire space, in the 
interval (xp, x,) there a re  two regular solutions, in (x8,x4) there a r e  three 
regular solutions, etc. 

(xi, xi+1) (let j < i ) :  

In the interval (Ox,), a s  we know (see 37), 

Take one of the various physically meaningful solutions over the interval 

N 

I/ = @&$-I - 2 Si, (k l )  $t)(Pn - 
n=1 

and continue it analytically into the upper halfplane. 

been made, this continuation i s  single-valued. 

in the upper k, halfplane falls off exponentially for r + 00. 

Since the cuts have 
i 

The function q'," - T d k n r n  
T n  

Hence we 

ii -x3 -x2 

FIGURE 34. 

conclude that none of the S-matr ix  
elements may have poles in the upper 
k, halfplane (except the poles on the 
imaginary axis). Indeed, let  SI,  have 
a pole at  a point k,. 
by SI,. The resulting function is clearly 
regular everywhere. 
k, + k,, this function will reduce to 

2 s'"$p'@n which by assumption is 
,,-1 ' 1 ,  

regular for all  r .  Thus, - is an 
energy eigenvalue in this case.  This 
i s ,  however, impossible for k, which 
do not lie on the imaginary axis,  since 

8 
Then divide (40.1) 

In the limit a s  

N 

Rakr . 
2m1 

- 
otherwise the energy eigenvalue would be a complex number, a t  variance 
with the Hermitian property of the Hamiltonian. As we see from this 
argument, the above theorem can be extended to all  the elements of the 
S -matrix without exception. 

nak: Now suppose that there i s  a bound state with energy E,, = - - in our 

system. 
Sf1 have a pole, i. e., for k + ik,, they all  behave a s  

2m1 
It is readily seen / 1 9 5 /  that a t  the point k, = ik,, a l l  the elements 

Sf/ = -& ; e*/ = const. (40.2) 
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Indeed, $) in the upper 
Hence, this t e r m  should drop out for Q 5 iR, when the function (40.1) 
is analytically continued to  the imaginary axis I. This is possible, 
however, only if at least one of the elements Sjn goes to irrfinity at this 
point, since then the entire h c t i o n  91 can be divided by this singular 

element Sin and the t e r m  s#;) will vanish for 

it is clear that i f  at least one of the elements of the S-matrix goes to infinity, 
all the other elements of the S-matrix go to infinity in the same way. 
Indeed, the wave function of a bound state ly, should have the asymptotic form 

halfplane diverges exponentially for  large r .  

i 
In 

= ih,. On the other hand, 

tJ 

n-l 
%- 2 &0-'~"%I, Ik&I = f -  (40.3) 

where the sum is taken over all the channels. Since particles from different 
channels may in principle transform to particles of all other channels, none 
of theAnmay be zero. T h e w o r e  only the terrnd-bhould drop out from the 
expression for tpe -tion when (4 any f is analytically 
continued to the PO M'in this case onat. This is possible 
only if all the elexpents S,,, h v e  the farm (4b.2) near the point f&. It is 
furthermore clear  that for  all f and n we should have 

(40.4) 

Otherwise, using different functions 
for  the wave function Yo of the bound state. 

From (40.2) and (40.4) it  immediately follows that the determinant 
assembled from the residues of the S-matrix elements and al l  its minors 
vanish at the point corresponding to  a bound state. 

A s  regards the poles of Si) in the lower Q halfplane, they correspond 
to quasistationary states of the system, as in the case of the ordinary Sch. Eq. 

Various analytical properties of the S -matrix are treated in 11961. 

we would obtain different expressions 

5 41. 
S -MATRIX ELEMENTS 

CONSTRAINTS ON THE RESIDUES OF THE 

In previous chapters we analyzed the properties of S = eat& and set  an 
upper bound for the residue of S at  a point corresponding to a bound state. 
Similar theorems can be derived for multichannel systems. 

systems is a natural generalization of the single -channel formula: 
F i r s t  note that the law of particle number conservation for  multichannel 

(41.1) 

where S is the outer surface of the volume V. cp/ is the wave function of 
particles in the j-th channel, ml is the reduced mass of the particles 
in the j-th channel. 
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In matrix notation, the total wave function of the system is written as 

and expression (41.1) takes the form 

where 

If the particles in all  the channels are spinless, momentum conservation 
considerations indicate that transitions between channels 

a1 + X i 2  a1 + XI 
a r e  allowed only if the particles in the left- and the right-hand sides are 
in states with the same 1 .  

with energy 

For  simplicity, we will consider this case only. 
Suppose that for a given 1 our multichannel system has a bound state 

nzk;o 
Eo = 2ml ; klo = iko 

and normalized wave function 

(41.2) 

wh r e  lktol a re  the bsolute values of the wave vectors of the particl 
the i-th channel, corresponding to energy Eo. 

If the k a r e  real ,  the wave functions have the form 

s in 

(41.3) 

Using (41.1) -(41.3), we derive in the same way a s  in Chapter 3 the 
expression 

(4 1.4) 

which relates the residue of a diagonal element of the S -matrix to the 
normalization constant AI of the bound-state wave function. Recalling 
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expression (40.4) of the previous section, we find 

where vn is the velocity corresponding to wave vector klo. 
We thus a r r ive  at a general  formula 

C/I 
S / 1 ( 4  - 
ka -. 1s 

where the residue Cji is given by 

(41.5) 

(41.6) 

(41.7) 

This is a generalization of the corresponding relation for a single- 

For simplicity, let UB 
If the interaction range R is zero. Le., a point interaction, expression 

channel system (I 15) and bound for the reaiduee C,. 

(41.2) for  the wave function of the bound state is applicable everywhere 
except a t  the point r - 0. The normalization condition is 

H x t Air* - #* (41.8) 
I=1 

If a l l  A, # 0, we clearly have 

IALl'<21hoI (41.9) 

and 

(41.10) 

Note that in distinction from a single-channel system, where f o r  R = 0 
w e  have the equality 

IC1 = 2 IRol. 
(41.9) is a s t r ic t  inequality. 
single-channel system the wave function comprises terms which correspond 
only to one pair  of particles. In a multichannel system, on the other hand, 
Yo incorporates the particles of al l  the channels, s o  that each channel 
accounts for a relatively small  fraction of the total wave function, a fact 
appropriately reflected in (41.9). 

give all the Sit, can be used to find the residues C/t from (41.6), (41.7) by 
analytical continuation of S,, in the complex plane. Once the residues have 
been found, we  can determine the normalization constants A I .  Thus, 
complete information on the continuum enables us to reconstruct the 
structure of the bound state. 

The reason for this  is the following: in a 

Note that scattering and reaction data, which in principle should 
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If the interaction range R i s  finite, expression (41.2) is applicable 
only for r > R .  
same lines a s  in 5 15, that 

From the normalization condition we obtain, along the 

(41.1 1) 

and inequalities (41.9), (41.10) a r e  weakened: 

(41.13) 

The principal consequence of this i s  that comparison of the experimental 
values of Cli with inequalities (41.10), (41.13) will in principle give an 
estimate of the interaction range. 

§ 42. 
RELATION TO THE R -MATRIX 

EXPRESSION FOR THE S -MATRIX AND ITS 

In the general case of an N-channel system, the S-matrix depends 
1 on 

these parameters,  since particle interactions have been very little studied. 
We know, however, that these interactions a r e  generally strong and of very 
short range. A reaction is therefore generally considered as developing 
in three distinct stages: 1) the particles a r e  on collision courses,  but as 
long a s  the distance between them is less than the reaction radius R ,  they 
do not interact (Coulomb forces a r e  ignored a t  this conjunction); 2) for 
r Q R the interaction is  turned on instantaneously and a so-called intermediate 
system is formed; 3) finally the intermediate system disintegrates and a s  
soon a s  the distance between the product particles becomes grea te r  than R .  
the interaction is instantaneously turned off. 

Using this schematic picture, w e  can obtain fairly powerful theorems 
on the behavior of scattering and reaction c ros s  sections. 
however, we should express  the S-matrix elements in te rms  of the wave 
functions and their  derivatives in the interior region r < R .  This problem 
was f i rs t  solved by Kapur and Peier ls  in 1938 11821 and by an alternative 
technique by Wigner and Eisenbud in 1947 11971. 
Thomas 11921 published a very detailed review on this subject. 

channels ai + X i .  Outside the reaction radius, i. e., fo r  r > R ,  transitions 
between channels X i  + ai + X ,  + a1 a r e  forbidden from the very definition of 
reaction radius. 

N(N + 1) parameters.  As a rule,  we know absolutely nothing about 

To this end, 

Recently Lane and 

The underlying idea is the following. Consider a system with N open 

The most general wave function for r > R is written in matrix form a s  

(42.1) 
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5 42. S-MATRIX AND R-MATRIX 

where the column matr ix  comprises a rb i t ra ry  numbers V I ,  and q-), qp) are 
the wave functions describing the incoming and outgoing particles in the f -th 
channel. 

their  values and the values of their derivatives fort - R be 
Inside the reaction range r < R, there  are also N regular solutions. Let 

i i 
The most general  solution for r < R can be written a s  

. &  

(42.2) 

(42.3) 

The matrix 2 is again quite arbitrary.  We write an analogous expression 
for the derivative in the form 

(42.4) 

Matching the wave functions and their  derivatives at the boundary, we 
obtain two matrix equations 

Elementary solution gives 

(42 .5)  

(42.6) 

where &lis a square matrix, 

4, = y y - 1 .  (42.7) 

The f i r s t  part  of the problem is thus completed: we have established a 
relation among the S-matrix and the wave function in the interior region. 
It now remains to find the properties of the matrix d,. 

We know that the S-matrix is unitary and symmetric, 
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Using these relations, we can now establish the properties of the new 
matrix I?,. 
leads to the relation 

Elementary calculations show that the unitarity of the S-matr ix  

4,A = MI?;, (42.8) 

where A? is a diagonal square mass  matrix 

and mi is the reduced mass  of the particles in the i-th channel. 
property of the S-matrix - i ts  symmetry - indicates that 8, is a rea l  matrix: 

The second 

R, = kl*. (42.8') 

At this stage we can conveniently introduce a new matrix #: 

& = R l i k  

From the properties of R,  we see that the new matrix b! is  rea l  and 
Hermitian. 
index transposition: 

In other words, i t s  elements a r e  real  and symmetric under 

Rih = Rib = Rri. (42.9) 

This means that the &-matr ix  is entirely determined b y v ) r e a l  parameters .  

In a two-channel system, say, we have three independent parameters:  

The S.-matrix is thus also expressed in te rms  of three parameters  only, but 
surely we know this already. 

Expression (42.6) in 
this case gives the following expressions for the S-matrix elements: 

As an example, consider a two-channel system. 

4 Sl1 = Drmr {(Rii@ - mi I&)') ( R & + )  - ms q$)') - Rh4t)d+)l. 

21 Rir 
k D '  SI, = s*i = - - - 

(42.10) 

For  a system with more than two channels, the expressions for the 
elements of the S-matrix a r e  more cumbersome, but the fundamental 
s t ructure  is the same. They a r e  in the form of a fraction where both 



§ 43. MEAN LIFETIME OF CONTINUUM STATES 

the numerator and the denominator are polynomials of N-th degree ( N  being 
the number of channels) of the exterior wave functions %*) and their 
derivatives at r - R. 

i 
ti 

1 

5 43. MEAN LIFETIME OF I(?ONmUUM STATES 
I 

In S 35 we found the mean lifetime of a scattered particle inside a sphere 
of radius a where the entire potential is concentrated. We will now solve 
the corresponding problem for a mUltiChaMe1 system /2 O O / .  

Consider a 6yettcm with N c b e l s  Q 4- Xi (I - 1,. . ., N) ,  some of which 
may be close E ,  Further consider one of the ener- 
getically all0 

r + X # - + q + X I .  , (43.1) 

We will now find 
particles of the ryrtem remain inside a sphere of radius r = u, The radius 
R of the region where interchannel transitions (43.1) take place is assumed 
to  be less than a. 

We use the rame timing technique as'in S 35 for measuring Tll: outside 
the spere r = a there iS a weak homogeneous magnetic field If directed along 
the z axis, and all the particles ut (i = 1, . . . , N) have a magnetic moment 
p = pS (which is equal for all I). 
polarized in the direction of the x axis. Inside the interaction range the 
colliding particles rrr + Xt may change to any other pair 111 + xk, which in 
i ts  turn may transform to the next pair a; +XI, etc. These transitions, 
however, do not affect our "clock" (i. e.,  the precession of the magnetic 
moment around the vector H), since by assumption all  ai have the same 
magnetic moment p. The lifetime TI! can therefore be found a s  

Wetime Tu for this process during which the 

The colliding particles a r e  assumed to be 

where 0 is the angle between the vector p and the x axis,  which specifies 

the direction of the outgoing particle, and o = is the spin precession 

frequency in a magnetic field. 
The S-matrix of the process (43.1) 

contains two kinds of quantities (see (42.6)): (a)  the elements of the R-matrix, 
which depend only on particle interactions inside the reaction radius, and 
(b) functions *$*'and *$*)' which depend only on the behavior of particles in 
the various channels outside the reaction radius (note that $$*'are normalized 
by their asymptotic behavior 

To calculate 8, note the following. 

In what follows we assume that the sphere of radius r = a with the 
magnetic field inside it is the boundary separating between the interior 
and the exterior region. 
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Ch. 6. MULTICHANNEL SYSTEMS 

Let the S -matrix without the magnetic field be known:* 

Turning on a magnetic field inside the sphere r = a is equivalent to changing 
the energy of'the particles inside that sphere. 
aligned along H (s, = I/*) the energy E is incremented to E +pH, and for  
particles with spins directed against the field (sz = -I /*)  the energy is 
(E  - pH). 

For particles with spins 

Tne & -matrix elements change accordingly: 

At the same time the "exterior1' functions g(*) a r e  not affected by the intro- 
duction of a magnetic field at  r < a.  
s, - f l/I thus takes the form 

The S -matrix of the states with 

(43.3) 
d 6 where 

that the differentiation is done assuming al l  the "interior" quantities to be 
con st  ant. 

(43 .2) .  

lations give 

is the ordinary derivative with respect to energy, and E indicates 

Since the &-matrix can be expressed in te rms  of s, $*), and +(*)'using 
a3 is also expressible in te rms  of these quantities. Simple calcu- 

where k is a diagonal matrix of wave vectors,  and rp(*), $(*)'should be 
calculated on the sphere r = a .  

The wave function of the colliding particles ai + X i  (with p directed 
along the x axis) is 

The wave function of the product particles a/ + XI is clearly 

The angle between p and the x axis  to which this spin function corresponds is 

The definition of the R-matrix used here is somewhat different from that introduced in 942 /192/. 
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9 43. MEAN LIFETIME OF CONTINUUM STATES 

The mean lifetime Ti, is therefore /186/>: 

rrllcii1m ($3). (43.6) 
,-  

In the following we will require an explicit expression for the Ti, of a 
two-channel system ( 1  - 0). The S-matrix can always be written in the form 

(43.7) 

(this matrix is symmetric and unitary if u and fJ are rea l  and as + bs = 1). 
Using (43.4) and (43.6), we find 

T l * = + I m ( l ( g +  a) - 4Hlr)- r &hq + 4p&Y4b*IJ), 

(43.8) 
T,, = n [&el + a, +a(& - &) - 

+ e ~  -c &sin 2 (M + w}. 
Here 4, rr, and 4, 4 are the wave vectors and the velocities of particles in 
the f i rs t  and the second channel, respectively. The above expression for  
Tu is applicable even in the energy range when the second channel is closed. 

d 
A different result TI, = n Irn (sf, - yi - ) where E is the total derivative, was obtained in some sources. 

e. g., /242/. In general this result is incorrect /198/, as i t  only corresponds to the quasiclassical approxi- 
mation (but even not always so). 
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Chapter 7 

THRESHOLD EFFECTS 

Experiments show that a l l  interactions between particles (except the 
Coulomb interaction) are strong but relatively short -range. 
leads to a number of important predictions concerning the c ros s  sections 
of various processes.  This problem was studied in the greatest  detail by 
Wigner in 1947 11981. He started with a multichannel system 

This property 

ai 4- X I  -. a/ + X I  

and showed that from the one assumption of short-range character  of 
the nuclear forces we can compute 

X i  (ai, ai)Xi at low energies of incident particles: 

incoming and outgoing particles.  

general solution was obtained for the energy dependence of the c ros s  section 
of a process X i  (ai, a/) XI near  the threshold of any other process X I  (ai, a h )  x h .  

(a) the energy dependence of the c ros s  sections for elastic scattering 

(b) the c ros s  sections of the reactions X i ( a j ,  aJXI  a t  low energies of 

These results were considerably extended in recent years ,  when the 

S 44. 
SCATTERING CROSS SECTION AT LOW ENERGIES 

ENERGY DEPENDENCE O F  THE ELASTIC 

Let the interaction V between the particles a and X have a finite range R. 
Consider a state in which a and X have a definite orbital momentum 1 ;  

further let r >  R .  
multiplied by r ,  XI ( r )  z rRI ( r ) ,  for  r > R has the form (we a r e  dealing with 
neutral particles at  this stage) 

The Sch. Eq. for the radial  part  of the wave function 

(44.1) 

where & = fl is the wave vector of the relative motion of particles a and 

X ,  E is their  energy in the center-of-mass system, and m is the reduced 
mass.  The most general expression for  XhI in this region can be written 
in the form 

x ~ I  ( r )  = Ai (k )  I$\-) (kr)  - SI (4 Sp' W)Jt (44.2) 
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9 44. LOW-ENERGY SCATTERING CROSS SECTIONS 

where A and S a r e  certain constants dependent on k (or  E) and qj*) a r e  
two solutions which at infinity have the asymptotic form of incoming and 
outgoing waves: 

(44.3) 

Here, are the ordinary Basael functions. Functions normalized in 
this way describe the incident (-) and the outgoing (+) wave corresponding 
to  unit current  through any large ephere. 

F o r  t = R tb ’rofution-(44.2) should be matched continuously with the 
r h t e r i o r  region the particle energy E 
as a sum (E+ V) with the strong (large 

The interior wave function ~ ( 0 )  will 
eo@ (which ie emall compared to V). 

thus take that 

is independent of E, 
The matching condition takes the form 

(44.4) 

(44.5) 

whence for the elastic scattering c ross  section a s  a function of energy 
we obtain 

01 = (21 + 1) +IS,- 1 - k“- E*, (44.6) 
L43 

i. e., for small  E the neutral particles a r e  mainly scattered in the state 
with zero orbital momentum. 
vanish for k-+ 0. 
the repulsive action of the centrifugal barr ier .  

respectively, equation (44.1) acquires a Coulomb term 

The particle c r o s s  sections with I # 0 
Physically this result is quite obvious; it describes 

If a and X a r e  electrically charged particles with charges e, and G ,  

(44.7) 
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The general solution of this equation fo r  r > R is  again written in the form 
(44.2); girt), however, is now expressible in t e rms  of the Coulomb functions: 

where 1 = 5 5 ,  p = kr,  GI and FI a r e  the i r regular  and the regular Coulomb nu 
functions, respectively, and qI is the Coulomb phase, 
for r>R is written a s  

The general solution 

If AI is  taken equal to h f i ( 2 l +  l)i'2l, the f i rs t  t e rm will coincide with the 

coefficient before PI (cos 0)  in the exact wave function describing Coulomb 
scattering. We know from scattering theory in a Coulomb field (see 10) 
that this function contains the scattered wave (which should be multiplied 
by Pr (cos e) in order  to obtain the scattering amplitude in a state with 
momentum 1 ) :  

&kr-n In s k r )  (21 + I )  ( P l  - 1). ( 44.1 0) 2ik 

The second t e rm in (44.9) corresponds to the additional nuclear scattering, 
and it must be added to (44.10) if  we a r e  to obtain the total scattered wave. 
For  the total scattering amplitude in a state with momentum 1 we thus obtain 

For  R + 0 (R > 0) the Coulomb functions behave a s  

where 01 ( r )  is a certain smooth function of k which is independent of r and 
is  of the order  of unity; a lso 

Ci= Co-[(1'+q*)(2'+qa). 2' .. (P+q*)f'*, Co = [4q'". (44.13) 
r (21 + 2) cp - 1  

The matching condition (44.4) gives 

We see from expansions (44.12) that the dominant energy dependence i s  
represented by the factor 

(44.14') 
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For  sufficiently small  k ,  when $>P, this formula takes a simpler form, 
since by (44.12) and (44.13) 

(44.15) ' 

For particles of like charge, > O  and 

If the particles have charge of different signs, q < 0 and 

IS1 - 1 I = const. (44.16') 

Note that the right-hand s ides  of (44.16) and(44.16') are independent 
of I for $>P, The physical reason for  this is that the centrifugal 

potential (-3 falls off much faster than the Coulomb potential (+), 

so that the latter is the dominant factor. 
The partial  scattering cross section is 

a i  = v (21 + 111 ( P t -  1) + Pn1 (SI- 1) 1' = 

-$- (2 l+  1)(4s in1q~-2Re[(S~- l ) (~Y-1)]+  l.St-il'}=a~ +al1)+aja). (44.17) 

The first t e r m  is the pure Coulomb scattering. The Coulomb phase for 
small  k goes to infinity: 

Therefore a; for k+ 0 oscillates and goes to infinity a s  k-' for a l l  1. 

and Coulomb scattering and it is also an oscillating term.  
magnitude, 

The second te rm in (44.17) describes the interference between nuclear 
To orders  of 

for repulsion, 

for attraction; 
(44.18) 

of" - the pure nuclear part  of the c ross  section - is  a monotonic function 
of energy: 

4 
ka -e*%* for repulsion, 

- ka for  attraction. 
(44.19) 

I 
I Nuclear scattering (cry) + a?)) for particles of like charges is thus 

exponentially small  for k + 0 compared to  Coulomb scattering (of) and is 
entirely suppressed by the latter.  In case of Coulomb attraction, all  the 
three t e r m s  in (44.19) a r e  of the same order  of magnitude. 

I 
I 

I 
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A characterist ic feature of (44.18) and (44.19) is that neither 
contains 1. This is true for q'>P, which i s  equivalent to the condition 

E<(?)* / $. (44.2 0) 

At higher energies,  expressions (44.18) and (44.19) a r e  inapplicable for 
a given 1 .  

45. ENERGY DEPENDENCE O F  TWO-PARTICLE 
REACTION CROSS SECTIONS FOR LOW ENERGIES 
OF INCOMING OR OUTGOING PARTICLES 

Consider the case when the collision of two particles a and X is not 
restricted to simple scattering; the two particles may also react, 

a + X + b + Y ,  (45.1) 

producing two new particles b and Y .  As before, we will f i rs t  t reat  the 
case of neutral spinless particles. 
r, the distance between b and Y .  Outside the interaction range, the wave 
function of the system in a state with momentum I should have the form 
(we use the same notation a s  before) 

Let r be the distance between a and X, 

(45.2)  

where the expression in brackets describes the incident and the scattered 
waves of the pair  a -I- X (see (44.2)). and the las t  t e rm describes the 
outgoing wake attributable to the product particles b + Y .  CP ( i j )  is formed 
a s  the product of the interior wave functions of particles i and j .  Here M1 
is some function of k ,  and qr) is that solution of the Sch. Eq. for the 
particles 6 + Y9& which behaves asymptotically as 

(k, and ua a r e  the wave vector and the velocity of the particles b + Y ) .  
exact expression for tpp) is given by (44.3), where r, should be substituted 
for r ,  ka for k ,  and m, (the reduced mass  of the pair  b + Y) fo r  m .  

which may occur only if  the energy of the particles a + X (in the CM system) 
is such that E > Q. 
is E - Q .  and k, and 4 a r e  given by 

The 

Consider the case of a reaction which absorbs energy ( Q > O ) ,  i. e., 

The energy of the product particles b + Y in this case 

Note that the Sch. Eq. is applicable to these particles only if the distance between them is n > R .  
i. e., the particles are free. For r~ < R the particles b + Y cannot be seated separately from a + X ,  
since there is a possibility of transitions a + X 2 b + Y and the system is described by a more complex 
equation. 
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The wave function (45.2) at rl = R should match continuously the interior 
wave function, and the constants Sl and MI a r e  determined from this condition. 
The interior function is unknown, since we did not specify any particular 
interaction. We are certain, however, that this  is a bounded function. 
In other words, at r = R the product MI cpp*J (R)  is also bounded. F o r  k, -+ 0, 
I#) - &'*Id , and for the product to  be bounded we should have 

(45.4) 1 - MI (&,) - +) -&:+'I*. 
4 . I  (R) 

The reaction c r o s s  section 

(45.5) 

Thus, near  the creation threshold, two slow neutral particles are created 
in a state with 1 = 0. 

Let u s  now find the energy dependence of the reverse reaction 
. ,  

b + Y d a + X  (4b.8) 

for  low energies El of the particles b + Y. The cross section of this reaction, 
as we know, is 

ai"'= 2. (21 $. l ) f M #  z 
and it is determined by the same scattering matrix element MI a s  the direct 
reaction. For the energy dependence we thus obtain 

(45.7) 

F o r  small  k, the reaction mainly occurs in the state with 1 = 0 and the 
reaction c r o s s  section is 

a l 3 - z .  I (45.8) 

This is the famous "l/ v law" which describes the energy dependence of the 
c r o s s  section of nuclei for the capture of slow neutrons. 

Since the state with 1 = 0 is dominant, the cross sections for  absorption 
o r  creation of slow particles a r e  spherically symmetric. 

The energy dependences (45.5) -(45.7) a r e  determined entirely by the 
form of the wave functions 9:" of the slow particles in a state with given 
orbital momentum and by the boundedness condition imposed on the system 
wave function; these expressions a r e  independent of the properties of the 
fast particles. In particular, a and X may even be charged particles. 

The situation entirely changes, however, if the slow particles a r e  
charged. 

In this case &' is expressible in te rms  of Coulomb functions: 
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and using (44.12), (44.13) we obtain: 
for the reaction X (u, b) Y (production of slow charged particles) 

e-%**, if  b and Y have like charges, 
-{const, if  b and Y have unlike charges; 

for the reaction Y (b, a) X (collision of slow charged particles) 

[ $ c a s * ,  if b and Y have like charges,  

(45.9)  

(4 5.10) 
, if b and Y have unlike charges. 

The condition of applicability of these expressions is the same as for 
elastic scattering of charged particles ((44.20) of the previous section). 
A characteristic feature is that aI a r e  independent of I for q2> P. The 
reason for this i s  the same a s  before: the Coulomb bar r ie r  i s  much 
"wider" than the centrifugal bar r ie r ,  so that the latter i s  relatively 
insignificant for low energies. If the particles b and Y have like charges,  
their  capture and creation c ros s  sections a r e  exponentially small  and 
the fact that uI i s  independent of 1 is of no particular significance. 

since the c ross  sections uI with l #  0 a r e  by no means small and even 
a t  very low energies the reaction comprises numerous partial waves. 
The c ross  section thus retains a definite angular anisotropy up to the very 
lowest energies, unlike the c ross  sections of neutral particles. 

Another remarkable feature of the production c ros s  sections of slow 
particles of unlike charges i s  that the c ros s  section is finite starting at  
the very threshold. At the threshold the c ros s  section thus abruptly 
and discontinuously falls to zero. Of course, in reality there is no such 
jump. The point is that production of charged particles i s  accompanied 
by emission of y quanta and introduction of this factor, a s  was shown 
by V. M. Galitskii, leads to a very steep but nevertheless smooth (and 
not discontinuous) drop of the c ros s  section to zero a s  k,-+ 0. The c ross  
section thus very rapidly increases a s  we move away from the threshold, 
approaching a constant value. 

previous sections in Tables 1 and 2 below. 

If, however, the particles have unlike charges,  the position changes 

For  easy reference, we have summarized all  the results of this and 

TABLE 1. Scattering of slow particles 

No Coulomb inter- 
action between 

a and x have unlike 

ac - 2 sln'nl 

charges e and x have like charges 

I - k' a a n d  X ai = + a?) 

~ ( 1 )  ,&-te-2nn (oscillating &) I - k-9 (oscillating 
I al - k" 

(factor) factor) 

g(8) I - )-2,-mfi a;*) - k-a 
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4 45. TWO-PARTICLE REACTION CROSS SECTIONS 

All the resul ts  of this and previous sections a r e  applicable if  the nuclear 
interaction V falls,off sufficiently fast with distance. It can be shown that 
a sufficient condition is exponential decrease of the interaction 

with arbi t rar i ly  small parameter a. In what follows we invariably assume 
that this condition is satisfied, but in most practical cases a weaker 
constraint will be quite adequate as well. 

TABLE 2. Reactions with the participation of slow particles 
b Y and f a t  puriclu a X 

We have so fa r  regarded b and Y a s  spinless particles. The above 

Therefore all  the 
results,  however, a r e  entirely determined by the form of the radial  wave 
functions and a r e  independent of the spin functions. 
threshold energy features (Tables 1 and 2)  can be immediately extended 
to the case of particles with spin. 

With regard to the applicability of these expressions, we would l ike  
to mention the following: 

(a) in their  derivation we assumed that the quantities (of the type of z 
in (44.4)) associated with the interior region ( r  < R )  were independent of 
energy ; 

(b) for the exterior wave functions we used their asymptotic expressions 
(44.5) and (44.12). 

The f i rs t  of these two assumptions has  a direct bearing to the particular 
problem being considered, and it should naturally be verified in each case.  

A s  regards  the second assumption, w e  can be more definite in our 
evaluation: 

1) expansions (44.5) a r e  applicable for k,R -g 1, i. e., they a r e  valid 
for energies 

near  the threshold; 
2)  expansions (44.12) a r e  valid for 
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Sometimes. e.g. ,  in the case of charged "strange" particles,  we have 

9 (AE)b. 

This gives r i se  to the following remarkable situation: immediately near 
the threshold (E, < (AE)b)  a l l  the energy dependences a r e  of the "Coulomb'' 
type. 
and the c ros s  sections behave as those of neutral particles 

However, for  (AE)* < E  < (A&,, the Coulomb interaction is ignorable 

J 46. 
SCATTERING CROSS SECTION NEAR THE X (a, b) Y 
THRESHOLD, WHEN X ,  a ,  b, YARE SPINLESS 
NEUTRAL PARTICLES 

ENERGY DEPENDENCE O F  THE X (a, a ) X  

We will now show that the elastic scattering c ros s  section has a very 
peculiar energy dependence near  the threshold of the reaction X (a,b) Y 
/198--2001. The four possible energy curves a r e  shown in Figure 35.  
Analysis of these curves yields a wealth of information on spins and 
parit ies of the particles X ,  a ,  b, Y and on their  interactions. 

a b C d 

FIGURE 35. 

Suppose that when the relative energy E of the particles X and a is less 
than Eth, only elastic scattering X (a, a)X is allowed, whereas for E > Eth the 
reaction X (a,b) Y is also possible and the wave function thus has the asymp- 
totic form 

r ~ ( s , - I ) P I ] c I , ( a . x ) +  
[eir,r + L ,+bar 2 2[ + 1 

&rt 

+ ~ ~ ( 2 ~ + 1 ) M i P i Q , ( b 7 Y )  e. (46.1) 

Here @ ( i ,  k )  a r e  the interior wave functions of a pair  of particles i and k ;  
kl and k, a r e  the wave vectors of the relative motion of the pairs  a, X and 
b, Y ;  y and us a r e  the corresponding velocities, and PI is the Legendre 
polynomial. The f i r s t  t e rm in (46.1) describes elastic scattering and the 
last  t e rm accounts for the reaction. 
and of the reaction SI and MI a r e  related by the unitarity condition 

The matrix elements of scattering 
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Below the threshold, the particles b. Y cannot escape to infinity for lack 
of energy. The last t e rm in (46.1) in this case describes exponentially 
decaying "tails": 4 is imaginary, 4 = 114 1, and &I = tlSI':. The law 
of particle number conservation (i. e., equality of incoming and outgoin4 
currents) has the form 

I&['= 1. (46.2') 

As we have seen in the previous section, the reaction c ros s  section 
near the threshold depends on energy as 

so that M, = m#*. where m~ is a constant. Inserting this expression in 
(46.2). we find for E > Ea 

p I p  1 -+lr#+l, (46.3) 

, ,  
i. e., 

SI = @(I - 4 t m* P e+$ (46.3') 

where ISPI = I. The matrix element ~1 is an analytic function of energy, 
and expansion (46.3') should therehe remain valid for E < Ed. where no 
inelastic processes occur and where .Isti= 1. Since below the threshold &, 
is imaginary, then at  least  up to  t e rms  of the order k?' we again have 
below the threshold ISr'l = 1. The equality ISjo)I= 1 is thus applicable both 
above and below the threshold. so that SioJ may be written as ew8?), where 
the phase 8l"' is real  both above and below the threshold, i. e., for both 
rea l  and imaginary k,. This means that Si0' contains only even powers of k,: 

@) (&) = SjO)(0) + & + . . 
Immediately near the threshold (k*R 1, where R is the reaction radius), 

we can drop all powers of k, higher than the f i rs t ,  so that 

where 6, is the value of the phase Sp' at the threshold. Thus, near the 
threshold all SI with 1 # 0 can be treated as constant, whereas So is a 
linear function of &. 

of the elastic scattering c ros s  section near the  threshold: 
Given the energy dependence of SI, we can compute the energy variation 
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Here Uel (0, 
X (a, a) X at the threshold, a = a  (e) is the phase of the scattering amplitude 
a t  E = Erh: 

is the differential c ros s  section for the elastic scattering 

f ( 8 9  Eth\ = e'" (e) I f (e, E[h) 1 9  

and al(lkzl) = Imolakz coincides with the total reaction c ros s  section i f  

E > Erh 
Near the threshold u, (141) is proportional to and all  the other t e rms  

a r e  independent of energy. 
function of lk, l -  v m h l ;  the various forms of energy curves a r e  shown 
in Figure 35. 

Note another important point which will often cecGr ir. the following: 
the form of the elastic scattering c ross  section near threshold contains 
a wealth of information on the properties of our  system. 

Indeed, the c ros s  section u,, is a linear function of lk,l on either side 
of the threshold. Measuring the slope factors of the two branches and 
assuming the c ros s  section u(O,ErJ a t  the threshold to be known, we can 
use (46.5) to calculate 26, -a (e) and the reaction c ross  section u, (I&[). 
Since, moreover, we know the value of 

Thus near the threshold ue, ( & E )  i s  a linear 

we can find the function 

whose expansion in Legendre polynomials directly gives all the scattering 
phases 8,. 
in this case,  which generally plague the ordinary phase analysis where 
they a r e  eliminated only if the scattering c ros s  sections a r e  known for all 
energies from 0 to m. 

It is readily seen that no ambiguities and uncertainties a r i se  

For  the total elastic scattering c ros s  section we have from (46.5) 

i.e., only two types of energy curves a r e  possible in this case (types a 
and b in Figure 35). 

constraints which follow from our derivation: the reaction matrix element 
M, should be proportional to  &Is, and its  square should be small, IMol'< 1. 
Both these conditions a r e  satisfied if 4 R  < 1, which in fact determines 
the energy range around the threshold where (46.5) and (46.5') apply: 

The range of application of (46.5) and (46.5') is determined by natural 

(46.6) 

Another condition i s  that the intermediate system should have no reso-  
nances near the threshold, since otherwise the resonance phase 6, is a 
rapidly varying function of energy and the expansion analogous to (46.5) 
will be very complex. 
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I 

4 7 .  PHYSICS OF EFFECTS NEAR THE THRESHOLD 
OF AN INELASTIC CHANNEL . 

Let u s  consider the physics of our result. Formally, the threshold is 
a singular (branching) point of the equation describing the properties of 
our system, since for E < E& this equation has  a unique solution cor re-  
sponding to  the scattering X,  (a, OW, whereas above the threshold (E >Ed 
there are two independent solutions corresponding to different conditions 
at infinity: 1) the particles a,X collide and 2) the particles b, Y collide. 
It is therefore clear that at the threshold the wave function of the system 
has a singularity. The physical character of this singularity can be easily 
elucidated by considering the asymptotic expression for the wave function 
(46.1). Below the threshold the particles b, Y produced in collision between 
a, X cannot separate !of lack of energy, Outside the reaction range their  
probability density' dedrearrea exponentially, 

(47.1) 

"cloud" of the particles b, Y, 
whose distribution in space i s  proportianal te w, spreads over pro- 
gressively larger distances from the reaction region. In other words, the 
radius of the intermediate state produce 
relative number of b.Y particles in this 
indefinitely as we approach the thresham, The lifetime of the intermediate 
state increases correspondingly, 

When we c r o s s  the threshold, the exponential tails e-lk:lrfi become outgoing 
waves (e*lr1) of particles b, Y, so  that free particles b, Y may exist for  E > &he 

Thus, the immediate reason for threshoTd anomalies is to be sought in 
the indefinite "swelling" of the intermediate system a s  we approach the 
threshold from below. 

from (43 .8)  of the time Tll that the system remains in a sphere of radius 
r = R1, where R1 is greater  than the particle interaction range. 

llision between a,X and the 
ediate state increase 

This qualitative conclusion can be confirmed by a direct calculation 1187 / 

The scattering matrix can be written a s  

We know from the preceding analysis that 
for E>I!?th 

I where 8,,, 7 = 2\al*, and v a r e  constants. 

Inserting in (43 .8 ) ,  we find that below the threshold 

(47.2)  
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and above the threshold 

T ~ ,  ( R ~ ,  E )  - 2R1 - E { - 1 sin 2 ( ~ 1 +  61) + .+ sin 2ks ( ~ 1 +  v)} - (47.3) 
v1 

The only rapidly varying functions of energy in these expressions a r e  I u, I 
and 141. 
entirely determined by the f i rs t  t e rm in (47.2). For fixed R1 this t e rm 
monotonically increases a s  we approach the threshold. The qualitative 
trend of Tl1 a s  a function of energy is shown in Figure 36. Tl1 has i ts  
maximum a t  the threshold point. 

The energy dependence Tll(R1, E )  below the threshold is thus 

r 
FIGURE 36. FIGURE 37. 

Expressions (47.2), (47.3) give the time Tl,(R1,E) that the system spends 
inside a sphere r = Rl. We have already seen, however, that the radius of 

the intermediate system increases indefinitely ( a s  L) on approaching the 

threshold. 
intermediate state. 

R1> 

the system spends inside a sphere r = R1 changes by 

I k¶ I 
Therefore Tll(Rl, E) must be less than the true lifetime of the 

To establish the energy dependence of the t rue lifetime, we should take 

In this case,  as the energy is incremented by A E ,  the time that i 

(47.4) 

where I u , ' ~  is the magnitude of the velocity corresponding to the energy 
E + A E .  Clearly, expression (47.4) gives the energy dependence of the true 
lifetime of the intermediate state near  the threshold. 
approaching the threshold from below the t rue lifetime of the intermediate 

state goes to infinity a s  - ~ (Figure 37). 

the qualitative treatment at the beginning of this  section. 

We see that on 

i This is consistent with VXFE 

S 48. GENERALIZATION TO PARTICLES WITH SPIN 

In previous sections we already observed that the study of threshold 
anomalies in cross  sections provides a wealth of information on system 
properties. This is particularly c lear  for particles with spin. 
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Consider two most important cases, which w i l l  help us to elucidate all 
the characterist ic features arising when particles with spin are involved 12 01 / . 

Let a and X be spinless particles, let Y have a spin s and let b have a 
spin of one half. Two caaea are possible: 

(a) P (a) P (x),-.P (b) P 0 (P  (9 is the parity of the particle i ) .  Near the 
threshold b and Y m e  created 
f .  e., total momenfllm 1 = s f1/2. Since by assumption the parity of the 
incoming and the product particles is the same, the reaction X (u, b) Y is 
possible only if a+X hove an even orbital momentum lI equal either to  
s+1 /2  or s- l/Z(nCcording ae.whibh of the two numbers is even). Cor re -  
spondingly, condition (46.2) will relate MI to  
(48.4) we obtain 

' a state with orbital momentum 1 = 0, 

and not So, and in place of 

The scattering crabs section now takes the form 

and we see that the cross section anomaly described by the second t e rm in 
this formula vanidteo for m08e .ngles when PI, = 0. We can thus find the 
orbital momentum & a d  heace the spin of the particle Y. 

(b) The case P (a) P ( X )  = - P (b) P (Y) differs from the previous case in 

that lI is now odd. 

anomaly vanishes for e c 
initial and the final particles had different parit ies,  whereas if  the threshold 
anomaly does not vanish a t  that angle, the parit ies were the same. 

Study of threshold anomalies, as we see from (48.1). gives various other 
data a s  well: 

1) the ratio of slope factors of the c ros s  section curve before and after 
the threshold gives (261, -a (0)); 

2) the angular distribution gives the modulus of the scattering amplitude 
I f  (0, Ed 1; 

3) the angular distribution of the anomalous term in (48.1) then gives 
the orbital momentum 1, and hence all  the elastic scattering phases; 

4) the magnitude of the anomaly gives the total reaction c r o s s  section a,; 
5) the parity and the angular momentum ll give an indication of the 

relative parit ies of the pairs u , X  and b,Y and determine the spin of the 
particle Y. 
in the physics of "strange" particles. 

Thus, detailed study of the elastic c ros s  section near  the threshold 
greatly facilitates the very problem of phase analysis, makes it uniquely 
solvable, and supplies a wealth of information on the inelastic channel a s  well. 

If the spin of particle b i s  some j .  and not 1/2, the only complication 
is that the anomalous te rm in (48.1) will  have to be replaced by a sum of 
identical t e rms  corresponding to all the values of ll allowed by momentum 
and parity conservation. This w i l l  make the analysis more tedious, but 
in no way affect the amount of data that can be extracted from experimental 
scattering findings. 

Since Pl,+l (cos +) = 0 and P,, (cos+)# 0, if the threshold 

(in the CM system) we can safely say that the 

This method of parity determination is particularly promising 
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Another important case is when the incident particles a lso have spin. 
Let a have spin 112  and X be spinless, a s  before; the spins of b and y are 
112  and s, a s  before. 

The finite spin of a introduces a substantial complication in the relevant 
expressions, since now for the two values of the total momentum s k 112  
of the product particles we have to find two orbital momenta ll and la of 
the pair a,X of appropriate parity such that the corresponding total momenta 
jl= 1 ,+1 /2  and j1 = l ,+1/2 a r e  equal to s + 1 1 2  and s- 1 1 2 ,  respectively. 
Thus, the reaction may proceed through any of the two orbital states and 
it is therefore described by two matrix elements MS+,/. 
The linear dependence on 
of two orbital states:  

M', Ms-*/, M". 
near the threshold is therefore characterist ic 

Now the previous formulas can be easily applied to calculate the c ros s  
section and the polarization of a, X: 

(48.3) 
I 1 a e l ( e ,  E )  = \ g (e, E )  (* + I h (e, E )  11, 

9 (ev E )  = 2 Im [h  (e, E)  g* (e, E)]/U,, (e, E ) ,  
g (e, E )  = 

h (e, E )  = 21k1 - 2 , [sf''* - s:+'*] pp). 

i 2 [ ( I  + 1) (S:'"- 1) + I (s:"- l ) ]  P I ,  
1 

If, say, the internal parity of the particles before and after the reaction 
is the same and s i s  odd, a l l  the S{ near the threshold can be treated as 
constant, except 

and by (48.3) we have 

where, a s  before, k, and k, a re  the wave vectors of the relative motion of 
particles aX and by ,  respectively, and Pf ' is  the associated Legendre poly- 
nomial. Inserting (48.4) in (48.3). we readily obtain the energy dependence 
of the c ros s  section and the polarization. Both a r e  found to have a singularity 
a t  the threshold, a s  expected. The c ross  section and the polarization a r e  
both linear functions of I kz 1 near  the threshold, so that experiments at  a 
fixed angle 0 give six quantities: uel (e, E&), 9 (e, e,,), and the slope factors of 
u and 9 on either side of the threshold, Analysis of the experimental data 
is not a s  simple a s  before, but it nevertheless gives the parity and the  
spin of Y ,  the c ros s  sections a;*'/*, and the elastic scattering phases I$. 

simple reason. Near the threshold, we actually measure three independent 
quantities: the relevant parameter  itself (c ross  section, polarization, etc.) 
and i ts  derivatives with respect to lksl on either side of the threshold, which 

Threshold measurements give such a wealth of information for a fairly 
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a r e  expressible in t e rms  of the scattering phases at the threshold. Thus, 
near the threshold the experiment yields three times as much data for the 
determination of the unknowns as the usual experiments do. 

Suppose, for example,' that particle u (spin 1 /2) is scattered off X 
(spin 0) .  If in the relevant energy range al l  the inelastic channels are 
closed, it is well known that phase analysis requires measurement of the 
c r o s s  section and the polarization of u at all angles. If, however, some 
inelastic channels ore open, phase analysis can be made only if, besides 
the elastic channel, we have izlvestigated all the open inelastic channels. 
Even in t H i s  case the phase analysis does not give single-valued results.  
The situation therefore is substantially simpler i f  we study the region 
near one of the threaholds. 

, for E < Em only elastic 
g the c r o s s  section below and above 

the threshold, ons for  the scattering phases. Thus, 
e from the three equations 

provided by the mea 
to compute the E we have only two equations 
for phases: the In the more complex case 
when several  in the scattering phases are 
complex numbers, c r o s s  section and polarization measurements near the 
threshold will enable us  to  determine 
long study of all the open ele be elastic channel. 

Threshold regions are thus uniqus 
means a r e  sufficient to disclose a wealth of information there. 

of Q we can find a l l  the phaaes a and hence 

asea without going into a 

nse that relatively simple 

49. GENERALIZATION TO THE MULTICHANNEL CASE 

We have so far considered only two coupled channels ( a , X  and b , Y ) .  
In practice, however, we  a r e  often dealing with multichannel problems. 
A suitable example is provided by most nuclear reactions and also by 
reactions between strange particles. We will therefore consider the general 
case of a multichannel system / 2 0 l / .  We s tar t  with N + 1 pairs of particles 
ai, xi ( i = 1. 2.. . . , N + 1). which may react according to the general scheme 

ai + Xi a/ + Xj. 
Let the channels be numbered in the order of increasing threshold 

energies Ei (i. e., the lowest res t  energy is that of the channel a,, X,; as the 
energy is increased, the channel a,, X, is opened, and so on). 
of this system a r e  described by a ( N  + 1)-row scattering matrix Si/ ( i ,  j = 
= 1, 2 ,..., N +  1). 

Let u s  study the energy dependence of the scattering matrix elements 
near the threshold of the ( N + 1)-th channel. 

process is ai/ = 2- ISl/ - 
(we assume for simplicity that all the particles are neutral and spinless and 
further consider only the case of zero orbital momentum. 
tion to finite spins and orbital momenta is trivial, though fairly tedious.) 

The properties 

The cross section of the i + f  

where ki is the wave vector in the i-th channel 

The generaliza- 

k: 

185 



Ch. 7. THRESHOLD EFFECTS 

Near the ( N  + 1)-th channel a l l  the Si(N+l) have the form S I ( N + ~ )  = mik'In; S N + ~ ,  N + ~  = 
= 1, where mi a r e  constants and k kN+t. 

matrix, i. e.,  the matrix elements a r e  related by 
The law of particle number conservation leads to unitarity of the S- 

(49.1) 

where the dummy index goes Over all the open channels. 
makes the S-matrix symmetric: 

Time reversibility 

si* = Ski. (49.2) 

Using these general properties and the known form of Si(N+l). we can 
find the energy dependence of all the matrix elements Si, near the threshold 
of the ( N + 1) -th channel. 
(retaining only the first two terms):  

We expand a l l  Sii with i, j # N + 1 in powers of k 

srj = sy + at! k .  (49.3) 

Since all  Si, are analytic functions, this expansion is valid both above and 
below the ( N  + 1)-th threshold. 
channels, k is imaginary ( k =  i l k l ) ,  and the unitarity condition takes the form 

Below the threshold, there a r e  N open 

At the threshold ( k  = 0) it reduces to 

(49.4) 

(49.5) 

Above the threshold (k = lkl), a new channel has  been opened and the 
unitarity condition is 

(49.6) 

From all  these equalities, we obtain by elementary manipulations the 
following expressions for the coefficients ail : 

aij = - y 1 rntmj. (49.7) 

This is the solution of the problem formulated at the beginning of this 
section. 
c r o s s  sections uif near the threshold of the (N + 1)-th channel (note that to simplify 
the treatment we confined ourselves to the case of zero orbital momentum): 

Indeed, it enables us  to find the energy dependence of a l l  the 
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mj and m / ,  apart  from phase factors, a r e  proportional to the square root of 
Ui(N+l)k-' and u,(,v+&~, respectively. 

c ros s  section or, i np the r  words, as the coupling i + (N  + 1) and f +  (N + 1) 
become stronger. This -ne immense vistas for the study of interactions 
between any pair, of particles from the energy dependence of the reaction 
between other particles. 

threshold the c r o s s  sections of all the processes l + j  have singularities 
of the form shown in Figure 36. Study of these singularities will  disclose 
a wealth of information. 

Thus the threshold anomaly of the i -+ j process increases with increasing 

. 
The fundamental ConcluBfdn can be summarized as follows. At the 

S 5 0 .  SINGULARJTIE 
THRESHOLD OF CHA 

We have see 
section of the e 

&old eingularities in the c r o s s  
webme with increasing c r o s s  

reason. the only 
old of uncharged 
tate with 1 = 0, since 

centrifugal ba r r i e r  
prevents the p r  wing the reaction region. 

t h e i r  creation c ros s  section 
near the threshold is small  even in the channel with 1 = 0 on account of the 
Coulomb bar r ie r .  No  threshold singularities w i l l  thus be observed in the 
elastic cross section in this case. 

charge, and this case deserves special attention / 202 / .  
outlined in § 46 is inapplicable in this case: for neutral b and Y the threshold 
point E = Eth is a simple branching point and the expansion for S obtained 
above the threshold remains valid below the threshold as well, which is 
no longer so for  charged b and Y. 
singularity, since in a Coulomb field there is an infinite number of bound 
states with Em as their condensation point. The expansions of all the 
physical quantities below and above the threshold are now essentially 
different. A more detailed analysis of the problem is therefore indicated. 
We will have to introduce a number of assumptions concerning the properties 
of our system, since the principle of particle number conservation in itself 
is no longer sufficient. 

In what follows we assume that all the particle interactions (except the 
Coulomb forces) a r e  zero outside a certain range R ,  which is referred to 
a s  the reaction range or  radius. 
establish the form of threshold singularities. 

radius the wave function of the reaction 

The position is entirely different if b and Y a r e  particles of unlike 
The approach 

The point Em in t h i s  case is an essential 

This assumption alone is sufficient to 

We know f rom the general theory of reactions that outside the reaction 

a + X  

\b+Y 
a + X f  
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has the form (we consider only one partial state at this stage, and therefore 
only the radial part i s  given) 

(50.1) 

g(*are the radial functions of particles a 4- X which have the asymptotic 

form - - i e f l k n r  , cp(+) is the radial function of particles b + Y, 6 

S,. and sab a r e  the elements of the scattering matrix. 
We know from the previous chapter that in two-channel systems the 

scattering matrix elements depend on the interaction inside the reaction 
range (I < R )  only through three r e a l  parameters. In te rms  of these para- 
meters,  the relevant elements of the S-matrix can be written in the form 
(see footnote to  p. 168) 

(50.2) 

!$+)' 1 a r e  the logarithmic derivatives of the wave Here T,= - 
functions at the reaction radius, k is the wave vector of the pair  b + Y, R i k  

a r e  the "interior" constants (the elements of the R-matrix) which a r e  
determined by the nature of the interaction for r < R ;  Rn,  
be regarded a s  virtually constant since cp(+) and r a r e  extremely sensitive 
to  energy ( E , ,  is an ordinary regular point for Rtk,  *(*, and T,,, whereas for 
cp and T this is  an essential singularity). We may therefore write (50.2) 
in the form 

g(+)' 
$(+) l r - R  ; = - q(+) -R 

and r,, can 

s n a = P m  i -?/A' I . sab = -- &'la C (50.2') q(+) A - T ' 

where all the slowly varying quantities a re  collected in the constants 8, C, 
and A, so that the dependence on the "fast" variables T and cp(+) emerges 
distinctly. The matrix elements Sob and S, naturally satisfy the unitarity 
condition which in this case is equivalent to the statement that 8 is real  and 
Im A = - / H I .  C S  

To find the energy dependence of the elastic c ross  section, we require the 
logarithmic derivative of T above and below the threshold. 
cannot be computed using expressions (44.12) of this chapter, a s  they are 
applicable only above the threshold, when &> 0. We have to  use the general 
expression for the Coulomb function, which remains valid below the threshold 
as well: 

This derivative 

i l s n - y d $  ) / r ( f  + 1 + iq)r (1 + 1 -iq) x 
(50.3) 9iyW = 

i 
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Here z = -2kr; 9 = f + 1 + iq; p = 21 + 2, r is the gamma function, and 9 is 
its logarithmic derivative. Above the threshold (k > 0). the function ~ g )  
reduces to  

For I&I --+ 0, r -+ 0, we obtain from (50.3) the following approximate expres- 
sion for  T: 

where f is an  energy-independent constant, 

and 

(50.4) 

(50.4‘) 

1 t = [In (- 21kr) + tp ( I  + 1 + fq) - ln 12kqr I]. 

In case of particles of unlike charges, q =  2 < 0 above the threshold; 

Seeing that for large values below the threshold, where u =  i l u l ,  i q < O .  
of the argument the function (I, behaves a s  

(I, (w) - lnw 
P I - -  

for nonnegative I and as 

(I, (w) - In (- w) - n cot auu 
I*l- 

for  negative w, we obtain 

(50.5) 

Above the threshold t is constant, whereas below the threshold it goes to 
infinity an infinite number of times: 

The energies E,, a t  which the cotangent is infinite are given by 

(50.6) 
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where n is an integer. 
energy of the Coulomb bound states of the pair  b + Y, which would have 
existed had the only forces between b and Y been Coulomb forces. 

matrix element Sa, can be written a s  

This expression coincides with the expression for  the 

Let us  now consider the behavior of the elastic c ross  section. The 

where a = a, + ia, and (3 = fl, + isI are complex constants formed in an obvious 
way from the constants A and 6 in (50.2') and the constants entering expres- 
sion (50.4) for T. 

Above the threshold t = i and the c ross  section of the X (a, a) X scattering is 

The c r o s s  section of the reaction X(a ,b )Y  is 

(50.7) 

(50.8) 

Both cross  sections are independent of energy since k, - the wave vector 
of the pair  a + X - can be regarded a s  constant near the threshold. 

Below the threshold only elastic scattering is allowed. Its c ross  
section has an infinite number of resonances which have 
their condensation point: 

the threshold a s  

1) sing 

(50.9') 

The physical reason for the appearance of resonances is the following. 
If the particles b + Y were not coupled with the a + X channel and there 
were only Coulomb interaction forces between them, the energies (50.6) 
would correspond to bound states of the b + Y pair. The coupling with the 
D 4- X channel makes these states unstable with respect to decay into a 4- X .  

The X (a. a) X cross  section develops resonances corresponding to these 
quasistationary states. The position of these resonances is determined 

by the condition 6 = m ++, whence we obtain 

( 50.1 0) 

This condition does not coincide with (50.6), i.e., the resonances are 
somewhat shifted relative to the position of the hydrogen-like levels (50.6). 
This is quite proper, since the Coulomb forces  a r e  not the only forces 
acting between b and Y. 
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The density of levels p (E)  (the number of resonances per  unit energy 
interval) calculated from (50.10) is 

(50.11) 

it increases a s  we come nearer  the threshold. On the other hand, the 
c ross  section averaged over some interval 2 A E .  

dEa, ( E )  =* (21 + 1) X 
k: 

is found to be independent of energy. 
levels decreases a s  (Eth- E)'/* a s  we approach the threshold. 
out the integration in (50.12) we should remember that for 

This indicates that the width of the 
When carrying 

1, 
i (4' - a*B) > 0. 

Note that the energy-averaged cross  section is continuous: comparison 
of (50.12) with (50.7). (50.8) shows that E, = ut, where ut = us + a, is the 

total c ros s  section above the threshold. * 
The qualitative behavior of the c ros s  sections 
near  the threshold is shown in Figure 38. 

Note that a s  1 increases, the levels 
become narrower and the position of the 
resonances approaches the points prescribed 
by expression (50 .6)  for pure Coulomb levels. 
The physical reason for this  is that for 
1 
one near  the other i s  very low, so that the 
transition b + Y + a + X is improbable. 
Thus, the lifetime of the quasistationary 
states increases with increasing I ,  and this 

Quantitative estimates can be obtained 
from (50.10) noting that a s  1 increases 

6 

1 the probability of finding the particles 

FIGURE 38. leads to a decrease in level width. 

the constant rapidly drops to zero. 

can be estimated without difficulty. 
magnitude a s  the binding energy of the first  Coulomb level of b + Y ,  i. e., 

The energy interval 6E where the scattering cross section has  a resonance 
It should be of the same order  of 

(50.13) 

F o r  "strange" particles 6E z lOMeV, so that all the specific Coulomb 
effects a r e  manifested in this relatively narrow interval. At the same time 
the condition kR< 1 is satisfied in an interval of a few tens of MeV around 
the threshold. It is therefore c lear  that although in the immediate vicinity 
of the threshold the dominant effects are Coulomb effects, somewhat farther 
away the theory of the previous sections for neutral  particles can be safely used. 

?his is a natural result, since highly excited states in a Coulomb field are similar in many respects to 
continuum states of low positive energy. Using this analogy for averaged cross sections of processes 

which eventually produce highly excited atoms (n*l), we find S G d E  -%E#, which enables us, 
for example, to improve on the estimates of dielectron recombination probability derived in /243--245/. 
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Ch. 7. THRESHOLD EFFECTS 

In atomic physics the situation is reversed: the region with k R < 1  is 

We have so far  assumed that the system has only two open channels. 
markedly l e s s  than 6 E .  

The principal results can be readily generalized to the multichannel 
case.  
more general relations derived for multichannel systems. 
sions are fairly cumbersome and we do not give them here. It suffices 
to note that the physics remains the same: the singularities a r e  just like in 
the case of a two-channel system and they a r e  observed in the c ros s  sections 
of a l l  the processes XI (aj, a,) XI which a r e  allowed near the threshold. 

Spins a r e  also introduced without any difficulty, and add nothing new. 
The theory of this section is particularly useful for the study of atomic 

collisions near  charge exchange threshold of the form A + B --* A+ + B -  o r  
in atomic photoeffect reactions A + y -. e- + A+ near the ionization threshold. 
The existence of c ros s  section resonances which have the threshold a s  
their  condensation point has been experimentally established for these 
cases  a long time ago. 

inelastic scattering threshold. 
of particular interest ,  since the position and the form of the threshold 
resonance in the p- scattering c ross  section will enable us  to gauge with 
considerable accuracy the deviation of the potential from the pure Coulomb 
potential, i. e., to measure the geometry of charge distribution in the nucleus. 

This can be done by replacing the expressions for the S-matr ix  by 
These expres- 

Another example is the scattering of muons by nuclei near the muon 
Experiments with p -  mesons may prove 
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Chapter 8 

THE LEE MODEL 

8 51. INTRODUCTION. THE MOMENTUM REPRESENTATION 

Nonrelativistic quantum mechanics (to which the scope of our book is 
confined) is generally concerned with the motion of particles in some given 
force field. Creation and transformation processes are the subject of the 
relativistic theory or, as it is sometimes called, the theory of quantized 
fields. 

This "delegation of responsibility" has deep-lying roots,  since when a 
new particle is created its energy need not be particularly close to  i t s  rest 
mass.  In the general case particles with E-mmC--.mc' are created,  and these 
are relativistic particles. 

Study of the creation of particle -antiparticle pairs draws heavily upon 
the relativistic form of the theory. The nonrelativistic theory of particle 
creation and transformation therefore cannot pretend to  immediate physical 
applications (we a r e  not concerned here  with the many -body problem, 
where the concept of quasiparticles describing collective excitations is 
introduced). 
pedagogical interest. 

A student of relativistic theory has to plunge into a sea  of new concepts: 
the definition of probability density is changed, the concept of antiparticles 
is introduced, Lorentz -invariance of the theory must be considered, the 
light cone acquires new significance, matching between theory and observa- 
tions requires  mass  and charge renormalization, tlie problem of the 
I'Moscow zero  charge" is encountered. 

of an idealized model, on the other hand, we can calmly and quietly 
concentrate on the physical meaning of only some of these new and difficult 
concepts. Experience fully justifies this gradual approach if  not for a l l ,  
then a t  least  for the majority of physicists; a notable exception was the late 
L.D. Landau, who was highly suspicious of all kinds of models. 

/203/* and it aroused considerable interest .  In this chapter we consider 
Lee 's  model with some modifications. 
particles:  two heavy particles V and N, and a light particle 0. 

However, the nonrelativistic theory may be of certain 

In the nonrelativistic theory of particle creation, which is in the nature 

A particular model of this kind was developed in some detail by Lee 

Lee started with three types of 
For  the 

Note that a computation technique similar to that of Lee's model had k e n  previously used by Dirac /62/ 
in his analysis of resonance scattering. The modified Lee model was studied in /204, 205/. A relativistic 
solvable model was considered by Zachariasen /206/ and Thirring /207/. 
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Ch. 8. THE LEE MODEL 

light particle Lee uses the relativistic equation F = C'p' + m V .  
particle 6, however, is not considered, and this i s  a highly significant 
omission: it i s  particularly because of the absence of antiparticles that 
we may consider only few different states of N ,  namely either V Z N + 8 o r  
8 + V z  N + 28. If antiparticles a r e  introduced, we have to consider an 
infinite sequence of states 

The anti- 

N Z V  + e 2  N + 8 + 6 Z V + 9 + 2 c Z . .  . 
By ignoring the antiparticle 6,  the theory i s  confined to finite calculations. 

tion for 8 is superfluous and outright inconsistent. 
If, however, the antiparticles 6 a r e  ignored, the relativistic approxima- 

We will therefore develop a theory in which 0 is also nonrelativistic: 

k' A EB (k) = me + T;;;B 

This theory is physically meaningful if the mass difference between N 
and V particles is  close to the mass  of 8: 

m V -  mN - m,<m,. 

In this case,  in addition to the usual momentum representation of the theory 
of fields, we can write all  the resul ts  in the coordinate representations. 

For the wave function of 8 we can write the Sch. Eq. The creation of 0 
is accounted for by the inhomogeneity in the Sch. Eq., i.e.. by a t e rm not 
containing $0. 

is particularly helpful in connection with mass and charge renormalization. 
The Lee model is also generalized to the case of N and V with spin. 

In this case,  the theory with changing space parity leads to a relation 
between the spin of the unstable particle and the direction of the outgoing 
decay product 12081. 

Apart from their  educational importance, model considerations a r e  a lso 
of heuristic value, for prediction of qualitatively new effects attributable to 
the interaction with electromagnetic field in theory where space parity is 
not conserved. 
1209, 2101 and the anapole moment 1211, 212/ (interaction with currents) 
of a stable particle, 

8. 
three Hamiltonians of free motion for each of the particles: 

This lends a new intuitive dimension to the theory, which 

This includes the dipole moment of an unstable particle 

Consider a system comprising heavy particles N and V and light particles 
The Hamiltonian of the system without interactions is the sum of the 

HO =l[mJ'(r) V ( v ) + & V V + V V ] d r  + 
+ 1 [m,N+ (r) N (7) + & VN'VN] d r  + 

+ [Pep+ cp (4 + $ vcpq  d v .  (51.1) 

Here m ~ ,  mN and B, V+,  N+ and cp+, V, N and cp are the rest  masses  and the 
creation and destruction operators of the particles V ,  N ,  and 0 ,  respectively. 

Throughout this chapter we use the system of units with i I c I I .  
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Detailed discussion of the properties of these operators can be found in 
Landau and Lifshitz's "Quantum Mechanics" 1 8 1 .  

Using the new operators, which a r e  functions of the momentum, we write 
the Hamiltonian in the form 

Fourier-transforming, we change over to the momentum representation. 

(51.2) 

The sum over k can be replaced in the usual way by an integral over R :  

Here 
k' E ( & )  = rn +zx. 

(51.2') 

(51.3) 

Clearly, for a given momentum &, the kinetic energy of the heavy particles 
is ignorable compared to  the kinetic energy of the light particle 8. There- 
fore, in what follows, we will use the Hamiltonian 

and sometimes drop the subscript k of the operators Nk, v b ,  and q b  for 
simplicity. 
of energy on momentum for  the light particle 8, although the res t  mass  has  
been added. 

particles of each of the three different kinds. 
an eigenvector of this Hamiltonian, and the corresponding energy eigenvalue 
is E = 0. Other eigenvectors are filO), N:10) ,  and 1$10) with the energies 

E =mo, E =mN,  and E = p + %, respectively. * 

Thus, unlike Lee, we  assume a nonrelativistic dependence 

The eigenvectors of H, can be classified according to the number of 
The vacuum vector 10) is 

c 

Note that all these vectors are normalized t o  6 (R- R'): 

<OIcp,.,cpfIO) = (0 l [ c p w ,  cp;110) = d ( R  - k') (0 10) = d ( k - k ' ) .  

Equalities of the form Hocp;(O> = E, ( k ) q f  10) are easily checked using the 
commutation relations of the operators. Note that since the energy of V 
and N i s  independent of the momentum, the eigenstates of H ,  a r e  the vectors 
SI, (r)V+ (r)drlO), J f ,  (r)N+(r)dr 10) with arbi t rary functions fi (r)  and f, ( r ) .  
also require s ta tes  in which two particles - N and 8 - coexist. The c o r r e -  
sponding vectors N;,qt;,lO) are normalized to 6 -functions and 

We wi l l  

S w i t c h i n g  o n  t h e  i n t e r a c t i o n .  we now add to the Hamiltonian 
N + 8. which has  the an interaction te rm corresponding to the reaction V 

The m a s  of a "bare" particle V, which is an eigenvalue of the Hamiltonian H, without interaction, is 
designated by a. The notation m,, is introduced at a later stage: it corresponds to the "physical" particle V. 
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form V+Nq 4- VN+cp+. 
taken at the same point, so that 

F o r  simplicity we assume that a l l  these operators are 

Although in the nonrelativistic theory we can consider nonlocal inter - 
action, i. e . ,  "action a t  a distance". on passing to the relativistic case 
nonlocality in space inevitably leads to nonlocality in time and clashes 
with the causality principle. 
only. In the momentum representation, 

We w i l l  therefore consider local interaction 

Hi = gQ-"' (V i ,  Nbn 'Pb,+ Vb ,  NisT~)~ba,ba+b,v (51.6) 
bas bs, b, 

where Q is the volume where the particles a r e  observed. 
from summation over k to integration over k ,  we find 

Changing over 

It is readily seen that a system described by the total Hamiltonian 

H = Ho + H, 
has two simple conservation laws 

5 + nN = n, = const. 
nv + ne = n, = const, 

(51.7) 

where nv, nN,  and tu are the total numbers of V, N and 8 particles. As 
the eigenstates of the system we therefore naturally choose states with 
definite values of these conserved numbers. 
positive (no antiparticles), the corresponding functions contain a finite 
number of particles and the problem can be solved exactly (without using 
the perturbat ion theory, say). 

It is readily seen that the free N and 8 particles remain eigenstates 
even when the interaction is turned on, and the energy of these s ta tes  
does not change, i.e., 

As these numbers a r e  always 

(51.8) 

However, a ''bare" V particle - V;lO> - is no longer an eigenvector of the 
total Hamiltonian. 
f i rs t  be solved in the f i rs t  o rder  of the perturbation theory. l n e  matrix 
elements of the interaction Hamiltonian H,  for transitions from the state 
V i l O )  do not vanish only for the s ta tes  N h ; I O ) .  We may therefore write 

The state of the physical V particle,  Illphyl,o > I v,), will 
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5 51. M O M E N T U M  REPRESENTATION 

where I(&) is of f i rs t  order  in g'. The coefficient before V,'lO) is taken equal 
to  unity, since we a r e  working in the f i rs t  o rder  of the perturbation theory. 

We s tar t  with the equation 

(51.10) 

It is highly significant that already in the f i rs t  order of the perturbation 
theory we use the exact energy my. which is shifted relative to m,. Note 
that although the f i rs t -order  correction to energy is zero,  m, - mv is infinite 
already in the second order  of the perturbation theory. 

Equating the t e rms  with N h : I O ) ,  we find 

(51.11) 

Thus the probability of finding a physical V particle in form N and 8 with 
momenta between k and k + dk is given in the first  order of the perturbation 
theory by 

(51.12) 

The exact solution hardly differs from the first order of the perturbation 
Since the eigenstates of H constitute a complete system, we 

Each t e rm in this sum should correspond to the same "charge" 

theory. 
naturally seek an eigenvector of H a s  a superposition of the eigenvectors 
of H,. 
values n, and n, as V+ 10) does: n, = 1, n, = 1. Apart from V'IO). the only 
vectors meeting this requirement are the two-particle s ta tes  Ni,, &IO). 
The solution is therefore sought in the form 

(51.13) 

The meaning of this expression is quite obvious: the state of a physical 
V particle is sought as a "bare" V particle surrounded by a cloud of decay 
products (possibly virtual). 
purposes; for simplicity we consider a V particle at rest .  
requirement is that 1 V , )  be an eigenvector of H, + H1 corresponding to the 
eigenvalue my, which is the observable mass  of the V particle. 
momentum is automatically conserved: 

The constant Z is introduced for normalization 
The next 

The 

The equation therefore reduces to the form 

Equating the coefficients of NW,10), we obtain for f ( R )  the previous 
expression (51.11). 
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Let x' = 2p (m,v + p - mv) > 0. This will make the V particle stable. * 
Further equating the te rms  with GlO), we find 

( 51.14) 

This equation can be considered a s  an expression for the observable 
mass  mv in te rms  of m, and g. However, my enters  this expression in a 
fairly complex form, namely a s  a free t e rm and through na. A better 
policy therefore i s  to determine m, in t e rms  of g and the experimentally 
observed mass m y .  If the interaction is strictly local, i.e., of the form 
(51.5), the integral in (51.14) is divergent. Note that it a lso diverges when 
a relativistic dependence of E on k is assumed. 
should be plus infinity if  we a r e  to obtain a finite observable mass  m y .  

This is what we call the renormalization of the mass  of the V particle. 
Let us  now compute the normalization constant 2 taking (Vm,lVph,) = 1. 
We find 

Hence, the bare mass  m, 

(51.15) 

For nonrelativistic E (k), this integral converges in a theory with scalar  
local interaction. 
this integral is also divergent. 
for the scalar  interaction a s  well. 

However, if vector interaction is  considered (see below), 
For relativistic E (R)  the integral diverges 

Note another important equality: 

( 51.16) 

It is applicable in the relativistic case too, when both 2-l and m, a r e  
expressed by divergent integrals. 

system in the state I V,) a small  perturbation of the form AH = ArnJiV,,. 
The mass  of the physical V particle changes, h = B b ,  where the coeffi- 
cient B is the fraction of the "bare" V particle contained in the physical 
V particle, i.e., B = 2. Note that this method for determining the fraction 
of the "bare" V particle in the physical V particle is analogous to the 
magnetic-field timing device used in Chapter 5 for measuring particle 
collision times. 

N i s  thus 

To understand the physical meaning of this equality, we apply to a 

The exact probability of finding a physical V particle in the form e and 

i. e., the @ of the perturbation-theoretical solution is replaced by : 

dk s: = Zg' = g' ( I  + &S [ E  (ik) )-l= g a  (1 + g'Il)4. ( 51.17) 

For an unstable yparticle mv 
waves only (see Chapter 5). 

Re my + ilm my ; the integration contour over k.should isolate outgoing 
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9 51. MOMENTUM REPRESENTATION 

Since this probability is an observable, w e  actually observe the renormalized 
charge e.  
scattering c ros s  section, which is clearly an observable. 

introduced in the Hamiltonian, the state with coexisting N and 0 with definite 
momenta is no longer an eigenstate. In simple terms this means that 
scattering is observed. Consider the t ime -independent problem with 
scattering of 0 by N. 4 We will work in the center-of-mass system (this 
is not essential, however, since N and V are much heavier than e) .  A s  
always, the solution includes the incident wave N&&lO). the scattered 
wave, and the virtual V particle ("bare", not physical): 

It i s  highly significant that en ters  the expression for the 

S c a t t e r i n g  i n  s c a l a r  i n t e r a c t i o n .  When interaction i s  

and we further demand that 

(51.18) 

(51.19) 

where 
k' E ( k ) = m , + B + T .  

From (51.19) we obtain the set of equations 

(51 2 0 )  
x ( k )  E (4 - E  (4IN + 8 (W-l/. c = 0, 1,1#1 &,I. 

C [ r n o  - E ( 4 1  + g (24Ji" 1 + dR x (k)] = 0. 

Its residue at  this The function x(R)has a pole a t  ( & l = l r C o l , X ( k ) = P - k ~ - i e .  

pole, a s  is readily seen, determines the scattering amplitude A = 2 n B  and 
hence the scattering c ross  section. 

B 

For  C we get 

(51.21) 

The integral in this expression is divergent and at a first glance it would 
therefore seem that we should take C = 0, x = 0, thus eliminating all  scat ter-  
ing of e by N in our model. Note, ,however, that we a r e  dealing with a 
difference between a divergent integral and the  infinite mass  4. Carrying 
out mass  renormalization and expressing m, in terms of the observable 
mass  my and the (divergent) integral from (51.14), we obtain adding up 
two integrals a finite, convergent expression: 

(51.22) 

A more difficult problem is that of scattering of B by V, which was considered by KZllen and Pauli /213/. 
The 8 -V scattering amplitude was fiat determined by Amado /214/ and the wave functions of the particle 
were derived in a number of recent studies /215-219/. 
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To use more precise te rms ,  we improved the convergence of the integral 
by adding another power E ( k )  - k1 in the denominator following the elimina- 
tion of m, from the original integral. 
in our model and we say that mass  renormalization is sufficient to eliminate 
the divergences. There- 
fore, in order  to i l lustrate the various techniques for the elimination of 
divergences, we will ca r ry  out a further transformation so a s  to express  
the result  in te rms  of the renormalized charge g:. 

In particular, this integral converges 

This, however, is not so for the relativistic E @ ) .  

Let 

For  the scattered wave we have 

Expressing &? in te rms  of g:, we get 

where 

(51.24) 

Ip-III=- dk (51.25) 5 [ E ( k )  - E (h) - 61 [ E ( ) )  -mmv]'' 

Let u s  t ry  to elucidate the logical aspects of renormalization, remember-  
ing that the actual interaction is not strictly local, being "fuzzed" over 
small  distances - p,  so that a cutoff is observed for extremely large 

momenta A - -. This indicates that the integration over dk does not 

extend to infinity but only to A .  
This does not mean, 

however, that they can be used conveniently, nor does it mean that we may 
take the limit a s  p -+ 0 (A +. w ) .  This can be done only i f  the renormalized 
mass  and charge mv and g, a r e  known (and independent of A )  and the resul ts  
are expressed in t e rms  of my and g,. To illustrate this point, we l ist  al l  
the principal formulas in which we assume as given 1) m,, g. A ;  2) m y ,  g, A;  

1 
P 

For  fixed A, al l  the expressions will be bounded. 

3) m y ,  &, A ;  A +  00. 

(51.26) 

(51.26') 

(51.26") 

5 149 200 



5 52. COORDINATE REPRESENTATION 

Note that on passing 1) + 2) - 3) the dependence of the scattering amplitude 
A on A for A + 00 is progressively weakened and in cases  2), 3) this 
amplitude has  a finite limit for A -+ 00. 

§ 52. THE COORDINATE REPRESENTATION 

Very enlightening resul ts  a r e  obtained when the problem of the physical 
V particle is solved directly in the coordinate representation 12201 .  A s  
the Hamiltonian is invariant under Galilean transformations, the motion 
of the center of mass  does not affect the final results. Therefore, a s  in 
all  two-body problems of nonrelativistic quantum mechanics, we can 
eliminate this motion, and the problem thus reduces to the motion of a 
particle with reduced mass  about an infinitely heave (fixed) center. In 
our case the reduced mass  of N and 8, equal to rnNp/(rnN + p), is nearly 
equal to the mass  p of the 0 particle. 
between these two masses ,  using p throughout. Since the motion of the 
center of mass  has  been eliminated, we can introduce creation operators 
of V and N at one certain point (say, the origin), V* and N+,  such that 
(0  IW+I 0) = 1 and (OlNN+IO) = 1. To obtain bounded results,  we first take 
the Hamiltonian H ,  in which the interaction function is fuzzed over distances - p (at  a later stage we will pass to the limit as p-+ 0). * This approach 
in fact corresponds to the renormalization technique. 

calculations, we take the interaction function in the form g ( r )  = gb(lr(--P) 

(so that l g ( r ) d r = g ) .  Then 

We can therefore neglect the difference 

To simplify the 

&Pa 

H =Ho+H1=rnoV+V+rn,N+N+ s cp+(r) ( a--A)x 2: 
X cp ( r )  dr + [gV+N !*) cp (r) dr  + h. c .] . 

The solution for the physical V particle is sought in the form 

The Sch. Eq. in this case gives 

(52.1) 

(52.2) 

(52.3) 

(52.4) 

with x8 - % ( m ~  + p - mv). 
9 (r).) If pQ l/% (this can be always assumed, since p - + O ) ,  equation (52.4) 
can be replaced*+ by 

(52.4') 

(Here we made use of the spherical  symmetry of 

A$ -xv = !2& (r) 

Strictly speaking, the following choice of g(r) corresponds to interaction in a thin spherical shell of 
radius p. 
A more rigorous solution of equation (52.4) for r > pdiffers from that of (52.4') by a term of second 
order of smallners inp.  These correctiom are ignored from the OUUet. 

**  
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and then 

(52.5) 

(52.6) 

Expanding (52.6) in powers of p and dropping all  t e rms  starting with the 
first order  in p. we find 

(52.6') 

1 
P 

whence we see that m, - - for p + 0. The wave function of the e particle 

in the momentum representation (Cf(&)in (51.11)) is readily seen to be the 
Fourier  transform of $ ( r )  in (52.5). The normalization factor Z = 11 + 
+ $IqI*drl-l therefore coincides with the Z calculated in the momentum 
representation. 

renormalized charge e = Zg'. If we w r i t e  
Expression (52.6') defines mass  renormalization. We can also introduce 

we find 

(52.8) 

It is clear  from the las t  expression that the observable charge satisfies 
the inequality 

ig<1;1== (52.9) 
P' 

Otherwise @ < 0, i. e. ,  g is imaginary. If g is imaginary, the Hamiltonian 
cannot be Hermitian, and this seriously clashes with the entire statist ical  
interpretation of quantum mechanics. In particular, 2, which is equal 
to  the probability of finding a physical V particle in the ''bare" state V+lO>, 
becomes negative. 
However, by the variational principle, an  interaction which causes t rans-  
formation between particles can only reduce the energy of the ground state.  
Thus, for gs< 0 we encounter nonphysical states of the V particle with 
E <  mv (so-called "ghosts") /213/. 
V particles will involve transitions to "ghost" states,  and at  that with 

negative probabilities. All  this renders  the theory with >e = 

unacceptable from physical standpoint. 
Let u s  now consider the scattering problem. 

HO = E@ with E = mN -I- p + 2 is sought in the form 

Mass renormalization for g3< 0 leads to my > h. 

Scattering of 9 particles by physical 

I1 

The solution of the Sch. Eq. 

2P 
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where 

For  S (k) and C we obtain the equations 

(52.11) 

(52.12) 

Inserting for C in (52.1 1) its expression f rom (52.12) and rn, from (52.6), 
i we see that te rms  with - cancel out. 
P 

a s  for p -+ 0, m, -+ w, but the scattering results approach a limit which 
is independent of the cutoff radius. 

and the final result  contains x ,  which depends on the mass  of the physical 
V particle. 

The theory is thus renormalizable, 

The mass  m, of the bare V particle a lso drops out from the equations 

After elementary algebraic manipulations, we find 

(52.13) 

We can now easily find an expression for the scattering amplitude: 

(52.14) 

Note that fairly often the physical (renormalized) charge is defined by 
the pole t e rm of the scattering amplitude: 

(52.15) 

Since the residue of the scattering amplitude at  the pole E = -Q is 

(52.16) 

this definition is equivalent to the definition (51.17). 

negative and its absolute value is bounded from above: 
From (52.16) we see that the residue of the scattering amplitude is 

(52.17) 

Note that this restriction on the residue coincides with the constraint which 
is obtained from (15.9) for R = 0. This is not surprising, since (52.17) can 
be derived (using the result of /221/) proceeding only from analyticity and 
unitarity properties, which hold t rue both for potential scattering and for  
the Lee model. 
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The scattering amplitude A as a function of the complex variable k has 

another pole at  k = - i ( X  + T). This pole, however, lies on the nonphysical 

sheet of the complex E plane. 
The renormalized charge g, satisfies inequality (52.9), and it reaches i t s  

extreme value a s  t he  "bare" constant g goes to infinity. 
In this case the fraction of the bare  V particle contained in the physical 

v particle goes to zero, and in the limit the physical V particle is entirely 
"made up" of N + 8. * Thus, the limiting value of the residue corresponds 
to a transition to a compound model of the V particle, made up of locally 
coupled N and 8. 

We see  from (52.14) that in the limit a s  ga --+ 00 the resul ts  completely 
coincide with the resul ts  of the theory of scattering by a singular potential 
with a discrete level at  E = -Q. 

As the fraction of N + tl in the amplitude of the physical V particle 
approaches unity, we a r e  drawing progressively closer  to the limit; the 
fraction of the bare V particle correspondingly goes to zero. 
bare V particle a s  such vanishes and its role is confined to a ca r r i e r  of 
the local interaction which binds the N and the tl in the physical particle. 

We are near the limit i f  gas=. 

becomes smaller,  the limiting relations characterist ic of the compound 
model become applicable progressively ear l ier ,  for progressively smaller  
values of g. 

In conclusion note that 
inequality (52.9) was f i rs t  derived in / 1 2 1 / .  
to the case treated by Landau 12221.  
to the relativistic case 12231. 

In fact, the 

Thus a s  we approach the pole and x 
Pa 

In this section we followed the method of 12201. 
The equality sign corresponds 

The inequality was also generalized 

8 53. INTERACTION WITH UNSTABLE 
INTERMEDIATE PARTICLE** 

We will now solve the equations for the case of an unstable intermediate 
particle. We again follow the method of 12201. 

Suppose that the time-dependent Sch. Eq. has a solution which is an 
exponential function of time (i. e., - e'Ed with complex E , ) ,  whose spatial 
part ,  describing the particles A and B ,  contains only an outgoing wave, 
i. e., rp @ e r / r .  In this case k, is also a complex number. For this t ime- 
dependent but nevertheless exponential solution we may also use equations 
of the form (52.3) and (52.4). 

The general approach here  is the same as for a stable V particle:  the 

properties of the physical unstable state, i. e., E,  and 4, E,==  k', +p+m,, 

a r e  assumed to be known, and the nonphysical bare  mass  m, is expressed 
in te rms  of the physical quantity Eo, the charge g ,  and the cutoff radius p.  

In the language of renormalization constants, this corresponds to Z going to zero. In the relativistic 
case Z = 0 may be regarded as the condition that a given panicle is a compound particle. 
An unstable particle in the Lee model was considered in /224, 225/. * *  
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5 53. INTERACTION W I T H  UNSTABLE INTERMEDIATE PARTICLE 

Then we turn to the scattering problem, i. e., a problem with arbi t rary 
real  positive k ,  with incoming and outgoing waves, and find the scattering 
amplitude. We use the expression for m, in te rms  of E,,  g, p; as before, 
the te rms  with l / p  cancel, i. e., the result has adefinite limit a s  p + 0, m, + 00. 

Before going into the actual details, we should make two remarks.  
result cannot be derived from the previous result for  a stable particle by 
formally replacing x with - iko,  since the bare mass &, although a non- 
physical quantity containing a te rm 1 / p ( mo --+ M for p + 0), should be rea l  
i f  the Hamiltonian is to  be Hermitian and unitarity is to be observed. 
Formal substitution of -iko for x in (52 .SI) does not ensure a real 4. 

and express the final result  in te rms  of u and w, which a r e  both real  
and positive. 

The 

The second remark is purely technical: it is  better to  s tar t  with k, = u - iw 

Thus for an unstable state 

eiortwr OS-@ (53.1) $ ( r ) = C 7 ,  E o = - -  P i f + c + mN.  

b 
ZP 

Inserting $(r) in the Sch. Eq., we see that the terms Eo* and ( p + m N - - ) S  

again cancel and as in (52.5) we obtain 

I(B p r + m r  

2n r '  cp(f)=--- (53.2) 

Insertion of (53.2) in (52.3) gives 

w i  v*-w* vm pf I 1 
mo = + 2n (p + w + i o )  = - - t  - + - - + w -I- iu).  (53.3) 

2P c b [ P  

Unlike (52.6'), this is a complex equation. 
of (53.3) immediately gives 

Since m, is real ,  the real part  

re, = !E&?* (53.4) 2a 

The problem with a stable V particle w a s  characterized by two para-  
meters,  Q ( o r  x )  and g. 
terized by three parameters u, e, and g, but not all of them are independent: 
relation (53.4) leaves only two independent parameters. 
simplicity, we henceforth express ga in terms of w .  

The problem with an unstable particle is charac- 

For  the sake of 

In particular 

(53.5) 

Now consider the scattering problem. Equations (52.10) -( 52.12) remain 
in force, the only difference being that w e  use (53.5) for m, and in the final 
result express gain t e r m s  of w by (53.4). After simple algebraic manipula- 
tions, we obtain 

(53.6) i+S ka-va-w' i k -  s= i-S 
(k  - o - iru) (k + o- im) 

= ( k - v  + iru)(k + o + i m )  ' 

2 p '  

(53.7) 
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Ch.8. T H E  LEE M O D E L  

The function S (and hence the scattering amplitude) has two poles in 
the lower k halfplane a t  k = v - iw. In the upper k halfplane, i. e . ,  on 
the f i r s t  E sheet, there a r e  no poles. 

Clearly fo r  $ ( f )  of the form (53.1) 

(53.8) 

Hence expression (53.8) for a stable particle gives in the limit a s  g*+ 00 

(53.9) 

in accordance with the classical  theory of Bethe and Pe ier l s  1201 .  
unstable V particle (53.6) gives 

For  an 

-=- d In(r$) u* k' ( 53.1 0) 
dr 2w + 3 - Zr' 

which for rea l  v and w and positive w can in no way be reduced to the form 

-- d ' n ( r w  - X I ,  %1>0, 
dr 

(53.11) 

corresponding to scattering by a singular potential with a virtual level 
(neutron -proton singlet interaction). 
an unstable particle give two poles in the k plane, which a r e  arranged 
symmetrically about the imaginary axis in the lower halfplane. 

A singular potential with a virtual level corresponds to a single pole 
on the imaginary axis in the lower halfplane, at  k = -ix, (see (53.11)). 

Even if  we make the two poles of the unstable particle merge and move 
to the same point k = -inl, the result  i s  a second-order pole, so  that the 
equations will still be different from those in the case of a singular potential, 
when a f i rs t -order  pole is  involved. 

In case of a stable particle, the two poles lie on the imaginary axis  and 
do not coincide, so that one pole can be made to go to infinity, while the 
other remains fixed; in case of an unstable particle this cannot be accom- 
plished, a s  the two poles a r e  symmetric about the imaginary axis. 

gives S = 1 for any finite k and V .  

particle has  no meaningful limit in the case  of strong coupling. This is 
the main distinction from the theory with a stable particle,  which in the 
l imit  of strong coupling reduces to the deuton theory. 

In other words, calculations with 

We see from (53.4) that in the limit as ga- 00, w--+ 00; insertion in (53.7) 
Thus, the theory with an unstable 

5 54. INTERACTION BETWEEN N AND V 

We will now consider the interaction of two heavy particles V and N. * 
We will show that, i f  the result is expressed in t e rms  of the renormalized 
mass,  it is free from divergent te rms .  Moreover, the renormalized 
charge will enter the result  quite in a natural  way. 

* This problem was solved in the momentum representation in /226/. 
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5 54. INTERACTION BETWEEN NAND v 

A natural approach to this problem is in the adiabatic approximation. 
This means that f i rs t ,  making use of the smallness of the mass of the e 
particle compared to my and mN. we compute the wave function of 8 for 
fixed N and V ,  separated by a distance b .  
depends on b as a parameter and can be considered as the potential energy 
of the interaction between V and N, associated with "emission" and 
"absorption" of e particles. After that, w e  can easily solve the problem 
of motion of the particles V and N in this field (this will not be done here ,  
however). Thus, the ''state'' of the particles V and N located at  points a, 
and al at a distance b = Ia,-aa,I from each other is described by the 
operators 
points r = a, and r =a1. The Hamiltonian H = Ho+H1 is written in the form 

The energy of this "state" 

(N:) and V: (g), namely the creation operators of V ( N )  at 

(54.1) 

The most general  form of the physical state with one V particle and one 
N particle a t  a distance b = ul -(I¶ is 

I VN) = C i K N :  10) + C J X  10) + N N : S  9 V )  CP' (r) dr 10). (54.2) 

Since the Hamiltonian H is invariant under the transformation 1 2 2 ,  the 
"eigenstates" can be classified according to the number I = f 1, where 
C, = IC1. The energy E of such a "statet1 is written in the form 

E = mv + mN + e, (54.3) 

since it is c lear  from the s tar t  that for  b + 00 we should have E + mv + m N  

(in this case e Solving the Sch. Eq., we obtain 0). 

cp ( f )  = -x[T pgcl r n r l  + 1 7 1  r n r *  I (54.4) 

(54.5) - my - e) c, + gJ' I,,'=@ = 0, 

r x =  If -all, r ,  = If -arlr 
q* = 2p (mN + p - m y  - e)  = x1 -2pe. 

Insertion of (54.4) in (54.5) gives 

o r  

(54.6) 

(54.6') 

From this equation we can find q and thus e.  
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Ch. 8. T H E  LEE MODEL 

We should now consider the limit a s  p + 0. Expanding in (54.6') 
in powers of p,  we drop te rms  of f i r s t  and higher orders ;  then 

(54.7) 

For fixed m, and p +. 0, the result is unbounded. 

1 the mass  m y  is expressed in te rms  of m, and -. 
P 

It is at  this stage that we apply mass  renormalization (52.6'), whereby 

Thus (54.7) takes the form 

1 
P The t e rms  with - cancel and we can let p go to zero. 

equation 
We thus obtain the 

(54.8) q' - x' -1 ,-sb -- P 

If g is replaced by its expression in t e rms  of g,, 

the equation takes the form 

(54.8') 

Equations (54.8) or (54.8') determine the energy of the (VN) system for 
fixed b .  We see that for I = + 1 the particles V and N a r e  attracted, 

E - ( m ,  +m,) = e  = L < O  , and for I = - 1 they a r e  repelled. 
XI- I 

ZP 
For  b >>x,  e (b) is approximately the Yukawa potential 

(54.9) 

Thus, the interaction potential between N and V ,  U (b) G e (b), depends on 
whether the particles N and V are in symmetric (in particular,  s-wave) o r  
in antisymmetric (in particular, p-wave) state.  
since the interaction associated with exchange of 0 particles gives rise both 
to ordinary and exchange forces.  Note that the presence of two different 
potentials does not spoil the orthogonality of the wave functions, since 
wave functions which a r e  solutions of the Sch. Eq. with different U (r )  have 
different symmetry and are thus automatically orthogonal to one another. 

This is not surprising, 

§ 55. VECTOR INTERACTION 

Let the fermions V and N have spin 112 and the bosons 0 have spin 0. The 
wave functions of V and N additionally depend on a spin variable. 
s = 'I2 we are dealing with two-component wave functions. In accordance 

For  
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5 55.  VECTOR INTERACTION 

with the usual convention of specifying spin functions, we assume that the 
first component corresponds to the state s, = +'I2 and the second component 
to s, = - 'I2. 
introduce corresponding creation operators for particles with upward and 
downward spins: 

These components will be subscripted with a and b .  We 

The density of the interaction Hamiltonian h corresponding to the 
reaction V ;2 NO is a scalar  which can be formed from the product of a 
spinor N, an Hermitian conjugate spinor V + ,  and a scalar cp. One possible 
approach is to form a sum of products of corresponding components of N 
and V+ (we know that such a sum is a scalar)  and to multiply it by 'p: 

h l =  g ( V 3 "  + ViNb)p + h. c. (55.1) 

This interaction in no way differs from the scalar  interaction that we have 
so  far dealt with. Indeed, if initially a l l  the particles had their  spins 
pointing up, the spin will remain up. 
do not interact; the spin and the orbital momentum are  separately conserved. 

Another possible approach to this  interaction, which should be independ- 
ent of the momenta of V and N (i.e., independent of the space derivatives 
of V (r)andN (r)) is the following: we act on the spinor N with the spin vector 

s= $ and multiply the resulting spinor by the Hermitian conjugate spinor V + .  

The r e s u l t  V+sN is a vector, and therefore to obtain the scalar  Hamiltonian 
density, it should be dot-multiplied by the vector Vq. 
in more detail the expression for V+sNVq,  using the symbol hl for  this 
scalar  quantity. We have 

Particles with antiparallel spins 

Let us write out 

(55.2) 

The interaction Hamiltonian is obtained in the following way: h, is multiplied 
by the interaction constant f, the Hermitian conjugate of the product is 
added, and the sum is integrated over the entire volume: I 

HI =!IF. ( f )  + h. C. 1 dr. (55.3) 

For  this Hamiltonian to be invariant under'space inversion, i. e., to 
1 

conserve parity, the product of the three wave functions $ $ 9 N ~  should be 
a pseudoscalar, since 8V is a pseudoscalar operator (this follows from the 
fact that the spin s is a pseudovector). Fo r  this to be so, it is sufficient, 
say, if 9( is a pseudoscalar, and tpv and 9~ a r e  rea l  (not pseudo) spinors. Note, 
however, that i f  the Lee model corresponded to experimentally observed 
facts, we could in no way determine separately the individual parit ies of 
V, N ,  and 0 f rom simple observation of reactions described by the Hamiltonians 
Bland if,. From these observations we can only determine the product of I 
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Ch. 8. THE LEE MODEL 

their  parit ies (+ 1 for H ,  and - 1 for H a ) ,  since by conservation of nl and n, in 
any reaction, one V particle on one side of the ”equality” invariably cor re-  
sponds to one N and one 0 on the other side. 
the absolute parity of a proton (or  a neutron), where ”absolute parity” is 
defined assigning positive parity for the vacuum. 
nucleon reactions the baryon charge is conserved, and we can only determine 
the product of the individual parit ies of the particles taking part  in the 
reaction. On the other hand, the parity of the +meson (equal to -1) can be 
determined in absolute te rms ,  since the exact conservation laws do not 
forbid a reaction of the type N + N + n0 (here N is a nucleon). 
particular case of the dJ meson the parity can also be found from its decay 
into two y quanta. In these reactions the parity of the n0 meson is inferred 
from the polarization ratio of the two y quanta, irrespective of the parity 
assigned to the electromagnetic field (the parity of a system of two y quanta 
with zero resultant momentum is + 1 for parallel polarizations and - 1 for  
antiparallel polarizations). The parity of n+and n-mesons is taken equal to 
the parity of the d meson (i. e., negative), since these three particles 
constitute an isotopic multiplet. 

relative to the vacuum) parity is feasible only for particles whose conserved 
quantum numbers a r e  the same a s  those of the vacuum (d  falls in this 
category) and moreover only when the particle decay is governed by 
parity-conserving interaction. 

sentation, dropping the subscript R of V and N and omitting the factor 
6 (R1 - Rl - Rl) ,  which accounts for momentum conservation: 

Similarly, we cannot establish 

This is so because in all  

In the 

In summing, we can say that the determination of the absolute (i. e., 

To return to the vector interaction, we write H ,  in the momentum repre-  

I H,=(2n)””SdR[i fV’(sk)Nqn+ h.c. 1, 
R = (ksinocosrp, ksinesinq, Rcose) ,  

i f V + ( s & ) N q & =  i f ~ ( V . i N a c o S B + ~ N b s i n ~ - ” +  

4- G N a  Sin k*’ - v,”b cos 0) qb . 

(55.4) 

As in the scalar  case,  the states of free motion of the 0 particles rpXl0) 
and the N particle (c&+ c,N;)10) a r e  eigenstates of the total Hamiltonian 
H ,  + HI. The state of the physical V particle (with its spin pointing up, 
say) is sought a s  a superposition of a ”bare” V particle with its spin up 
and a cloud of N and 8 :  

I Va) = z’”(V.’ IO>  + S dR [ q a  ( R )  N.’ + q b  ( R )  N i l  9: I O>] (55.5) 

As in the case of sca la r  interaction, we f i rs t  compute $0 (k )  and $b (&) 
to f i rs t  order  of the perturbation theory, with the same restrictions on m, 

(55.6) 



~~ -~~ 
~~ 

5 55. VECTOR INTERACTION 

where 

E (k) = mN + p + #/2p. 
The factors cos 0 and sin 8e'r ensure momentum conservation: a V particle 
with spin up decays into an N particle with spin up and a 8 particle with 
1 = 1,  m = 0, or an N particle with spin down and a 8 particle with I = 1,  
m = + 1. 
Hamiltonian is invariant under rotations. 
0 with 1 = 0 is forbidden since the parity p of this state, equal to the 
product of the parity Pl of the coordinate function of 8 (Pr = (-1)') and the 
internal parity P a =  - 1, is negative for I = 0, whereas the parity of the 
V particle is + 1. 
in the p-state ( I  = 1). Clearly both te rms  in (55.6) correspond to the 

same value of 1- and since fo r  V: IO). i = L ,  we should assign i = - to  

the entire state. 

coefficients, which are +G and -fi. Thus, during the fraction of 

the t ime when the physical V particle consists of N and 0, the orbital 
motion of 0 corresponds to the state PSI, of the ( N .  6) system. 

(if  we sum over the two spin states of the Nparticle). 
electrically charged, the V particle acquires no electric dipole moment, 
even though we a r e  dealing with vector interaction. This is a direct  
consequence of parity conservation: the relation between the polar vector 
of the dipole electric moment and the axial spin vector cannot be invariant 
under space inversion. 

In case of an unstable v particle the wave functions $a (k, 8, cp) and $b (k, 0,cp) 
characterize the angular distribution of the emitted decay products, N and 0 .  
The distribution of the emitted 0 particles is again spherically symmetric.  
Note, however, that for N particles emittedat a certain angle (the N particles 
are emitted in the opposite direction relative to the 8 particles) we know 
not only the probability ratio of the states with s, = +'I2 and s, = - but 
also the phases of the corresponding amplitudes. 
N particles emitted a t  a certain angle ( 0 ~ ,  (PN) when polarized V particles 
decay (in our example sly = + 1/2) a r e  completely polarized. This is a much 
stronger proposition than that concerning the probability ratio for sZN = f 'I2. 
The direction of the spin of the N particle will be defined as that direction 
along which the projection of i t s  spin is +'I2 with sufficient likelihood; this 
direction will be specified by the polar angles 8, @. The spin part  of the 
wave function of this state is proportional to 

The conservation of i, was clear  from the start, since the 
The conversion of V.' into Na and 

Thus, part  of the t ime the V particle spends as N and 0 

i 
2 2 

This can also be concluded from the Clebsch-Gordan 

Note that the cloud of 0 around N in the pnl, state is spherically symmetric 
Therefore, if 0 is 

This means that the 

( 
Comparing this expression with q,, and % we find 

21 1 

(55.7) 

(55.8) 
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That the particular Hamiltonian H ,  corresponds to interaction with the 
pa/, wave only is directly evident from the form of the Hamiltonian. 
elucidate this point, we introduce the operators 

TO 

(55.9) 

which destroy a free-moving 0 particle with definite values of 1 and 1, = m; 
their Hermitian conjugates a r e  the creation operators. Here Y1.m (0.q) are 
normalized spherical functions . hk 
obtain 

Inserting expression (55.9) for 'pb in (55.4) and integrating over dob we 

Ha = (24'" 5 k d& W [E ( fl; Na'f'k, 1. o - 

If we now use the Clebsch-Gordan coefficients (see,  e.g., 1 8 1 ,  where 
the normalization of VI, 
(creation) operators of an N i 0 pair with definite values of I ,  j ,  and j z ,  

(e ,  cp)is a lso  discussed) to introduce the destruction 

(55.11) 

H ,  is written in the form 

H s = - ( 2 n ) d / ' ~ R d k ~ f ) I ; i ; ; [ V : ( N O ) ~  '+ V;(Ne)",,']+ h.c.}. (55.12) 

This means that V interacts only with the pI, wave, i.e.,  the wave with 
1 = 1, j = 'I2. 

the perturbation theory only by a normalization factor Z'I9. 

equations 

As in the sca la r  case, the exact solution differs from the first order  of 
We have the 

(55.13) 

(55.14) 

In this case, the two integrals diverge. The reason for the divergence of 
the integral for ,?-I is very c lear  in the coordinate representation. While 
the s-wave solution near the origin behaves as 1-l and therefore Jdr4xrs I . J ~ I ~  
converges, the p-wave solution near r = 0 behaves mainly as fa and it 
cannot be normalized on account of the excessive density of 9 particles 
for small  r .  It also becomes c lear  why the "fuzzhg" of the interaction over 

Note that the vectors q$, 10 ) are normalized by the following relation: 
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5 55. VECTOR INTERACTION 

a range - p  leads to convergence of the integrals and  we see how the integrals 
depend on p. 
density of the 9 cloud at  a finite distance is proportional to l / , l ¶ .  
I f r  1' which should be an observable. 

is that here,  already for an arbitrari ly small 1 f t l a  # 0, we obtain 

We now introduce the renormalized charge I f ,  1' = ZI f I*. The 
It i s  thus 

The fundamental difference between this case and the scalar  interaction 

since Il = + 00. 

non-Hermitian, with all  the ensuing unpleasantness. 
dictions with the fundamental principles of quantum mechanics, the Hamiltonian 

i must be kept Hermitian, and this requires cutoff at high momenta A - - 
P '  

The following equality should thus be satisfied: 

This means that for any f r  # 0 the system Hamiltonian is 
So a s  to avoid contra- 

(55.15) 

Hence it is clear  that as I f r i a  decreases,  the maximum permissible A 
increases and the interaction approaches with better precision the local 
point interaction. For example, in quantum electrodynamics (where the 
formulas a r e  naturally different from (55.15)) this condition takes the form 

A 6 m,c . tF, (55.16) 

so  that hopefully we a r e  very far from that limit where  a substantial modifi- 
cation of the theory will be required to f i t  the observed data. 
follows that breakdown of quantum electrodynamics at energies much less 
than Ac would indicate substantial nonlocality of the theory. However, for 
A + 00 we should have 1 f , I ' - - *  0. In the relativistic theory of elementary 
particles,  an analog of this is the theorem of the "MOSCOW zero" 12271 
which states that for A +  o the observable interaction vanishes (if  only 
Hermitian Hamiltonians a r e  considered). 

interaction differs from the case of scalar  interaction in that charge 
renormalization is essential i f  we a r e  to obtain bounded results.  
the scattering of a 9 particle with initial momentum Ro = (0, 0, &) by a polarized 
N particle with spin pointing up (treatment of the general case need not 
introduce any fundamental difficulties). 

Hence it a lso 

S c a t t e r i n g  i n  t h e  v e c t o r  i n t e r a c t i o n .  Scattering by vector 

Consider 

The solution of the equation 

(55.17) 

is sought in the usual form 
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The term v,'IO) can be omitted from the outset, since the incident wave 
contains only states with j z  = + 112. We thus obtain the equations 

(55.19) 

(55.2 0) 

(55.21) 

t ko k c Imo - E (Ro)-iel  = -(2n)Jhif{z + s d k y  [x,(R)cosO + n ( k )  sln Oe-"]}, 

k 

k 

[ E  ( R )  - E (bo) - iel t ( R )  = 

[ E ( k ) - E ( ( R o ) - i e ]  xb(k)  = T(2n)-'/'if'CsinOef*. 

(2nj-''* i f 'c  cos e ,  

Solving these equations, we  find 
analogous) : 

and C (the expression for is entirely 

k (h)+ i f  case = 
E (k )  - E (ko) - Is ' 

m 

~ = - ( 2 n )  Jh i f T .  ko [ m , , - ~ ( k . ) - - S  I f  1% - k2 
4nk'dk 

( ~ R Y  4 E ( k )  - E (b) - i s  J1. 
Inserting for m, in (55.20) and (55.21) i ts  expression in te rms  of the 
renormalized mass mv and a divergent integral, we obtain 

Here  the integral 

still diverges for large k, although less so than the integral in (55.15). 
Inserting the renormalized charge, we ensure convergence of the integral 

W 

(55.24) I ~ = I , - l ~ = [ E ( k o ) - m , ] - ~  i - k* 4nka dk 
4 [ E  ( k )  -+PIE ( k )  - E  (ko) - id '  

and finally the scattering amplitude in the coordinate representation (see 
(21.5) -(21.9)) takes the form 

(55.25) 

p 2x* - 3% (k: + n') - Ug 
I* = - 

k i  + %a 

da The differential scattering c ross  section a=( lAala+[Abp)  is seen to be 

independent of the scattering angle. 
Note that although cutoff of large momenta is inevitable if we a r e  to 

retain a Hermitian Hamiltonian, the amplitudes (55.25) a r e  the l imits as 
A + m of the amplitudes in the theory with cutoff. 
renormalized mass  and charge that the dependence of the amplitudes on A 
is such that the limit as A + 00 can be taken. Particular calculations are 
of course best carr ied out directly for  the limit values. 

It is because we use 
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5 56. PARITY NONCONSERVATION 

Our model can be conveniently applied to the analysis of the polarization 

We s ta r t  with a scalar interaction. 
of scattered particles. 

the initial polarization of the colliding particles (e.g., a certain spin 
orientation) is conserved after the collision, since the scalar interaction 
is spin independent. 
unpolarized, the scattered N particles wi l l  also be unpolarized. 
spins of the target N particles point in the direction of motion, the scattered 
N particles a l so  have their spins in the primary direction, i. e., although 
scattering in this case does not produce polarization, the angle between 
the spin and the direction of motion i s  changed. 

In the case of vector interaction, scattering in our  model can be treated 
as formation of a V particle -the collision product of N and 8 -which 
eventually decays into i ts  constituents. Since the incident 6 wave (it is 
taken to propagate in the direction of the L axis) contains only states with 
rn = 0, V particles in states (I and b a r e  created with amplitudes which 
a r e  proportional to the amplitudes of N in states a and b ,  respectively. 
After that the V particles decay. Since a bare V particle interacts only 
with the pll. wave of N, 0,  we conclude that the 0 particles a r e  scattered 
isotropically (as viewed in the center of mass  system, of course) i r respec-  
tive of the actual character and degree of polarization of the primary N. 
The magnitude of the scattering c r o s s  section is thus independent of polari- 
zation. 
created V particle we can assign a definite spin direction. 
a s  we have seen before, decays and produces an isotropic distribution of 
6 particles. If the N target is partially polarized, so that it is described 
by a density matrix (in spin variables) and not by a wave function, the 
intermediate V particles a r e  also described by a density matrix. 
introduction of a density matrix is a way of averaging over an ensemble 
of "pure" noninteracting systems, the isotropy of scattering is not broken. 

If the N target is initially unpolarized, the scattered N particles remain 
unpolarized in the vector case as well. 
When a state V:lO) decays, the N particles emitted at an angle ( 6 , ~ )  have 
their spins pointing in the direction (55.8); when V;lO) decays the spins of 
the N particles emitted at the same angle point in the opposite direction. 
Thus, if the target is a mixture of N:IO) and Nb+lO) with uncorrelated phases, 
the states V:lO) and V,'lO) and hence the scattered N particles will have 
uncorrelated phases, which proves that the scattered N particles are 
unpolarized. However, scattering by polarized N particles in case of 
vector interaction does not leave the direction of polarization unchanged. 

In this case, as we have noted before, 

Therefore, i f  the N particles in the target are 
If the 

Indeed, to any "pure", i. e., completely polarized, state of a 
Such a V particle, 

Since the 

This can be proved as follows. 

S 56. PARITY NONCONSERVATION IN THE LEE MODEL 

The assumptioh of parity nonconservation in weak interaction led Lee 
and Yang 192 1 to two fundamentally new conclusions concerning the behavior 
of elementary particles with spin. 

decay. 
the momentum of the decaying particle (or in the opposite direction). 

The first  conclusion related to the possibility of asymmetric, nonisotropic 
The decay products should be preferably emitted in the direction of 
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Ch. 8 .  THE LEE MODEL 

The other conclusion suggested the possible existence of a dipole 
moment in elementary particles, again parallel (or  antiparallel) to the 
particle momentum. 

in experiments with $ decay of polarized nuclei 1931 and muons 12281. 
The predicted order  of magnitude of the dipole moment, however, is 
definitely beyond the possibilities of experimental detection. Landau 
developed a comprehensive theory linking the nonconservation of parity 
in the decay of charged particles with space parity 1299, 2301. * 

Landau's theory retains invariance under time reversal  ( t  
although the space parity is not conserved. Recent experimental resul ts  
1941 indicate that T-invariance is not exact either. However, the inter-  
action breaking the T -invariance is apparently weaker than the interaction 
which changes the space parity. ** Landau's theory with T-invariance is 
thus nevertheless of definite interest. 

particles is identically zero.  At a f i rs t  glance it would appear that 
asymmetric decay should lead to a finite dipole moment: consider a 
polarized neutron with i t s  momentum pointing up; it is an established 
fact that, when decaying, this neutron will emit electrons mostly up. 
Now consider the same polarized neutron in the spherically symmetric 
field of a nucleus; the energy relations a r e  such that the neutron is stable, 
it does not decay. 
the neutron emits an electron, which is reabsorbed instantaneously; we may 
thus visualize the nucleus a s  surrounded by a cloud of virtual electrons. 

Since the actual decay is asymmetric,  the virtual decay can also be 
expected to show certain asymmetry, and an asymmetric cloud of virtual 
electrons should produce a dipole moment. Landau gave a general proof 
of the fallacy of this primitive reasoning. Ioffe 12341 established the 
dependence of decay asymmetry and dipole moment on the assumptions of 
T-invariance. The point is that the assumption of l inear relation between 
the momentum k of the emitted particle and the direction of polarization 
(spin orientation) s of the decaying particle is consistent with time reversal:  
both vectors reverse  their  sign. The static dipole moment d or ,  a l te r -  
natively, the static center of gravity of the cloud of virtual particles r do 
not change their  sign when time is reversed. 
related to the static quantities r and d only in a theory which is not invariant 
under time reversal .  

Consider the decay of V into N with the emission of 0, assuming a parity 
changing interaction in our model ( V  and N have spin 112). This will enable 
us to elucidate the dependence of the decay asymmetry of a polarized 
particle of spin 112 on the phases of the coupling constants in the expression 
for the decay interaction. 

To first approximation, the decay asymmetry is found to depend on the 
imaginary part  of the vector coupling constant, whereas the dipole moment 
depends on the real  par t  of this constant, so that there is no direct relation 
between decay asymmetry and the dipole moment 12081.  

The f i r s t  of Lee and Yang's two conclusions was brilliantly confirmed 

4). 

One of Landau's conclusions is that the dipole moment of elementary 

Virtual decay, however, is allowed and in fact inevitable: 

The spin s is therefore 

The possibility of combining mirror reflection with transformation to antiparticles was suggested 
independently by Lee and Yang. 
A detailed treatment of the properties of T-noninvariant interaction can be found in reviews /231, 232/. 
Note that the detection of the electric dipole moment of a particle ( e .g .  , an electron or a nucleus) 
in a neutral atom is further complicated, as was observed by Schiff /233/, by the fact that screening 
suppresses the first order effects associated with the electric dipole moment. 

* *  
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We have already noted that for the total Hamiltonian to  be invariant 
under space inversion, the product of the parit ies of V ,  N, arid 8 should be 
positive for  scalar  interaction ( H I )  and negative for vector interaction (Ha).  
Hence it follows that a Hamiltonian which contains both Hl and H ,  a t  the 
same time cannot be invariant under space inversion. 
to 1956 - before the discovery of parity changing interaction -considerations 
of invariance under space inversion automatically ruled out Hamiltonians 
with the sum Hl + Ha. 
must consider Hamiltonians of the form Hbt= HI +HI. 

The problem will be considered in the 
first  order  of perturbation theory and the reverse  process 8 + N +V is 
therefore ignored. Since we a r e  not concerned with renormalization a t  
this stage, no distinction is made between m, and my. 

The coordinate representation is the most suitable for our purposes. 
First we isolate in explicit form the motion of the center of mass. The 
wave function of the V particle is taken in the form of a plane wave (the 
spin of V is assumed to point up): 

Therefore pr ior  

Fo r  parity changing weak interaction, however, we 

Consider the decay V-+ N + 8. 

The operator Hint = HI + H, converts this state to a vector with N and 6 :  

( I  is the spin index of N). 
The f i rs t -order  perturbation equations have the usual form 

HmIV) = IEv (k) - Ho11N8), (56.3) 

where H,is taken from (52.1) and E" (k)= m y  4- #/2m~. We now write Hint 
in more detail: 

(56.4) 

(56.5) 

Making the standard substitution 
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we separate the variables 

ql(rl, r,) = &*R $i(r) ; 

for $i(r) we obtain an inhomogeneous Sch. Eq., with the mass preplaced 
by the reduced mass of N and 8 .  
mass ,  we may write 

Using the symbol p to denote this reduced 

(56.6) 

Here E i s  the energy released in the decay. 

p = 
should behave a s  an outgoing wave $ - &pr/r. 

The decay is allowed for E > 0, when 8 particles with momentum 
a r e  emitted. At large distances from the source,  the solution 

Indeed, in this case 

(56.7) 

(56.8) 

(56.9) 

For E < 0 real  decay is forbidden. Virtual decay is described by a 
solution which falls off exponentially a s  cxr/r ,  where x1/2m = - E .  
case we get 

i e-Xr f d 

In this 

= - [g + COS 8 ( 4 1  = 
\ 

( 3 1  , 
=---[g---i-xmse f e P r  f I +  , 

4n r 

qb = - - 1 - L e i v s i n e d  c 
= --- f 

4n 2 dr ( ;", 
i &'sin e ( i  +,I. 4n 2 1 I 

These expressions provide an indication of decay asymmetry o r  of the 
asymmetry of the cloud of virtual particles when no actual decay takes 
place. A significant feature is the appearance of two te rms  in the expres-  
sion for $a: the transition of the V particle with s, = + 1 / 2  to N particle 
with s, =+ 1 / 2  may be accompanied by emission of either an s -wave ( 1 = 0)  
o r  a p-wave ( 1  = 1,  m= 0) 8 particle. Interference ofthese two t e rms  in 'p. 
gives t e rms  l inear in cos e which a r e  associated with the spin orientation 
of the decaying V particle ( 8  is the angle between the direction of polariza- 
tion of V (the z axis) and the radius-vector r ) .  

The wave function 9.5 corresponds to a transition of V ,  S, = + 1 / 2  to N, 
s, = - 112 .  It describes a p-wave 8 particle, 1 = 1, m = + l .  

Since $a and $b a r e  related to different orthogonal states of the N particle 
(spin up and spin down), there  is no interference between I#,, and +b. 
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5 56. PARITY NONCONSERVATION 

The current of e particles for large r in the case E > 0 is 

1 i = 2;;;(rp3ga - VS; + I P ; V ~ ~  - $bv&) = 
1 k r  

( 56.1 0)  = _ _ -  (4ny rap I [ 1 g 1 2  + I ! I ~  + +(tg*- Yg) C O S ~ ] .  

For  E < 0,  we a r e  concerned only with the distribution of the density p of 
virtual 8 particles, since the current a t  infinity is zero: 

e-1,r i X I  i '  P = f &% = T p j Z [ I g  1' + Tlflz( 1 + ;;;) - 

- + ( 1 + &) (fg* + r g )  COS e]. (56.11) 

Expressions (56.10) and (56.11) contain a highly significant result; they 
show that there is no identical relation between decay asymmetry and the 
asymmetry of the cloud of virtual particles: one depends on g'f - gf' and 
the other on g'f + gf'. 

plished by a suitable gauge transformation). 
Let the scalar coupling constant g be real (this can always be accom- 

It is readily seen that time reversal operation T reduces the Hamiltonian 

H I  -I& ifv'(o&) Nq, + h. c. (56.12) 

to the form 

T-'HlT = - dk i f V + ( ~ & )  N q b  + h. c.,  (56.12') s 
since this operation reverses  the sign of the momentum k and the spin o 
simultaneously and the c-numbers are replaced by their complex conjugates 
(the operator T i s  antiunitary). 
of zero dipole moment, a r e  observed only if f is pure imaginary, so that 
T'HlT = HI. 

The decay asymmetry depends on the imaginary part  of f and is zero 
when f is real. 

Conversely, for imaginary f the decay is distinctly asymmetric, but 
in the expression for the density of virtual particles the te rm with cos 8 
vanishes, the density distribution is spherically symmetric, and the dipole 
moment is zero.  

We can consider a more general case,  when, besides the interaction 
responsible for the transformations N + 8 t V  , there is an additional 
(say, Coulomb) potential between the particles N and 8. If the action of 
this potential on e is taken into consideration, but it is assumed to be 
spherically symmetric, the conclusion of zero dipole moment for imaginary 
f remains in force: to the real te rm g in the equation corresponds a spheri-  
cally symmetric real  solution and to the imaginary term i l f j  cos 0 cor re-  
sponds an imaginary solution which is proportional to I f 1  cos 0; no inter-  
ference te rms  proportional to cos 8 enter the expression for density, a s  
before. 

However, if f is real  (so that the decay is perfectly symmetric when no 
additional potential is imposed), the next higher approximation reveals 
decay asymmetry: when U ( r )  is introduced in the expression for  the outgoing 

Thus T invariance, and hence the property 
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wave, the phases of the s-wave and the p-wave change by different amounts 
a, and up,  'k SO that for the wave function Cpa for p i >  1 we obtain the asymp- 
totic expression 

Cpn = a' exp ( ik r  + k ) / r  + ik COS 0.b' exp ( ikr  + iup)/r (56.13) 

and for rea l  f 

( 56.14) k I = F~ [(a')' + k' (V)* + 2a'b' cos 8 sin (as - a,,)]. 

Here a' and b' a r e  respectively proportional to g and f ,  and the proportionality 
coefficients a r e  real. 
theless be asymmetric if  the source is extended and g and f are real. 

In the absence of a potential, the decay will never- 

J 57. 
PAR TIC LE 

ELECTRIC DIPOLE MOMENT O F  AN UNSTABLE 

In the previous section we found that in T -invariant theory a stable 
particle cannot have an electric dipole moment. This assertion, however, 
as w a s  first shown in 12091, cannot be extended to unstable particles. 
Indeed, an unstable particle is characterized by an exponentially decaying 
state amplitude and is enveloped in an outgoing wave of emitted decay 
products. 
change to an identical particle with opposite spin; it becomes something 
entirely new, a state with an exponentially growing amplitude surrounded 
by colliding decay products. 
cannot be extended to cover unstable particles. 

moment either. In his treatment, however, he leans heavily on a peculiar 
definition of an unstable particle whose physical meaning is not immediately 
obvious. 

scattering of stable particles passing through an intermediate unstable 
state 12101. Consider a thought experiment in which the electric dipole 

When time is reversed, the unstable particle does not simply 

Our proof of zero dipole moment thus clearly 

Bell 12351 maintains that unstable particles have no electric dipole 

Rigorous approach to this problem calls for a detailed study of the 

moment of the unstable particle in the intermediate 
state precesses the spin of the stable scattered 
particles. We will show that no spin precession is 
observed in the stationary problem on account of 
its T-invariance. For the scattering of a wave 
packet, on the other hand, the spins a r e  precessed, 
but in a very peculiar way, so that although the 
time-average spin precession is zero, it is different 
from zero a t  the initial instant. 

For simplicity suppose that the unstable particle 
i s  neutral, and decays into neutral particles, which 
a r e  not affected by the electric field. 

m,- fmJ 

2, ------- -- 
m,+m, 

FIGURE 39. 

The model, 
however, should also contain charged particles responding to an electric 

a, ando,, which are functions of the potential U (6, represent the increment of  the phase of the regular 
solution of the homogeneous equation for a -  ana p-waves relative to the s- and p-waves of a free particle, 

qs=sinRr/r,  ~ p = c c o s e ( - ~ - - ) .  cos kr 
sin kr 
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field. A suitable model w a s  proposed in /209/. 
model, with 8, N, V ,  Q, and 6. The particles 8 and 3 have spin 0; N, k, and 
r/ have spin 112; 8, N, and V are  neutral, N car r ies  positive charge, and 6 
negative charge. 
decay virtually into 3 and f; the parity changes in this decay. Let further 
V decay actually into 8 and N (me + mN < mv < m-g+ mE).  

dashed line corresponds to the energy of N and 8. The system is immersed 
in an electric field of strength F pointing along the z axis. 
/210/, this system is described by the Hamiltonian. 

This is a five-particle 

The masses of the particles a r e  so chosen that V may 

The term diagram of this system is shown in Figure 39. where the 

According to  

where mo is the nonrenormalized mass of V .  p i s  the cutoff radius, whichgoes 
to zero after renormalization. 

To first  approximation, we omit Fz. 
with complex energy E,  = e- 2. The real  and the imaginary par ts  of Eo 

respectively determine the mass of the particle V and its decay probability. 
To simplify the expressions, we will assume the parity-nonconservation 
constant and the decay constant to be small, so that terms with f', ha, etc., 
can be dropped. We moreover take 7 1 2 s  mz + -e ,  ~ 1 2 %  e - mN-p, which 
leads to the constraints 

We obtain an exponential solution 

Here  and in what follows we use the notation 

%' = 2ji (mg + p- E ) .  
x -  ," - 2jT (mx + i;- e), 

k' = 2p (E - mN - p), 
k: = 2p (e - mN - p). 
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BY ( 5 7 . 3 )  - ( 5 7 . 5 )  we get 

( 5 7 . 6 )  

( 5 7 . 7 )  

Note that i f  the second term in the denominator of ( 5 7 . 7 )  is much greater  
than 1,  i.e., if  the coupling between m,e' ,  and V is sufficiently strong, 
we have 

( 5 7 . 8 )  

i. e., the decay probability of V-markeily decreases.  If now the particle V 
may decay into other particles N" and e', etc.. additional positive t e rms  
will enter the denominator and the decay probability will diminish further. 
This effect in principle may be applied to explain the small width of some 
experimentally observed resonances. 

We will now consider Fz to f i rs t  order.  
( 5 7 . 4 )  for Cp and x and inserting these functions in equation ( 5 7 . 5 ) ,  we find 
that E, has no correction which is linear in F .  The expression for bEo is 
thus the same as in the perturbation theory for complex E o / 1 8 2 ,  1 8 3 1 ,  
8E,=FJi$o*Cp,zdr = 0 .  
contradict Newton's third law (action equals reaction). 
particle produces a dipole electric field, since $ViV$ dv # 0, but the homo- 
geneous electric field does not lead to a precession of its spin about the 
field vector, since no splitting i s  observed 8Eo = 0. This contradiction, 
however, is purely fictitious. 
not be manipulated like stable particles. 
beginning and a t  the end of the process we a re  dealing with stable particles 
(i. e., we do not dissociate the creation process from the decay process),  
no such paradox ar ises .  

The precession effect may be observed for the scattering of 8 by N. 
If before scattering, N i s  polarized along the z axis and the electric field 
is directed along the x axis, i ts  polarization after scattering can be 
expected to precess  through a certain angle a in the yz plane. 
effect to take place, it is further necessary that the state of the 8, N system 
have no definite energy, i.e.. we must consider scattering of wave packets. 
(The effect of the electric dipole moment in scattering is a [aa'l F effect, 
and because of invariance under combined inversion it vanishes if the ON 
system has a definite energy.) Note that if  the V particle has a magnetic 
moment and is immersed in a magnetic field, spin precession is observed 
in the stationary case also. 

Solving equations ( 5 7 . 3 )  and 

The result  &Eo = 0 would appear at  a f i rs t  glance to 
Indeed, the unstable 

It only means that unstable particles must 
If we remember that a t  the very 

For  this 

Our problem reduces to  the solution of a system of equations 

( 5 7 . 3 ' )  

( 5 7 . 4 1 )  
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We choose the following initial conditions: 

(I, ( r ,  0) = (4  a, x V ,  0) = 0, cp (0) = 0; 
-ipr- k 5 z  

¶a' . 4 

*a=2)/-e an )'Z 

a @I) corresponds to spin up (down). Let us calculate the derivative 

Using (57.3')-(57.5'), we find 

Integration of this equality over time from 0 to M gives 

A s =  Sx'(t,f)[Fr]~(r,t)drdt. 

To evaluate A s ,  we make use of the fact that the functions 

1 - e-ik' + S (k)e"' , 
(I,k = - 2n V T  1 

constitute a complete orthonormal system. Here 

(57.9) 

(57.10) 

(57.11) 

(57.12) 

(57.13) 

(57. 14) 

(57. 15) 

(57.16) 

(the formulas are written for E < rng + m?, for 

E > mg + mr, x+  - i v2p (E - mg - m r )  1, 

Expanding the functions qp0, $, X ,  q in this complete system and dropping 
exponentially small  terms,  we find that A s  = 0. 
moment of spin precession, i. e., calculate the integral 

Let us now find the f i rs t  

AS1 = - t d t .  (57.17) Sd:Y) 
Omitting the details, we give the final result: 

F g g h  1 p 
3 p* f *  ( 2 x r  k As1 =z - - ----I S ( k )  - 1 1'. (57.18) 
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On the other hand, given the exponential solution which describes the 
unstable particle, w e  readily find the electric dipole moment: 

Using (57.7) we obtain 

(57.19) 

( 57.2 0) 

Expression (57.19) corresponds to the dipole moment of an exponentially 
decaying particle. 
to the time derivative of the wave function. 
as follows: in the initial stages of scattering, when the amplitude of the 
wave function increases,  the dipole moment has a certain sign and the 
spin precesses  in a certain direction; toward the end of the scattering 
process,  the amplitude of the unstable particle decreases,  the dipole 
moment has a different sign, and the spin precesses  in the opposite direction. 
On the average, the spin precession i s  thus zero.  
precession, as should have been expected, has the same sign a s  the pre-  
cession angle of the decaying particles. 
sion is also clear:  A s l i s  proportional to the particle lifetime T ,  the 
precession of the spin of the unstable particle (TF~) .  the resonance factor 

(&) - lip, which is equal to unity in resonance, and finally to a factor 

We thus come to the following conclusion. If the polarization of the 

The dipole moment is found to be proportional to 7, i. e., 
We can thus interpret (57.20) 

The moment of spin 

The structure of the final expres- 

which does not vary much with energy and is also equal to unity in resonance. 

scattered particle is varied a s  a function of time during the scattering of 
a wave packet (time is reckoned from the formation of the wave packet), 
the polarization vector can be expected to precess  f i rs t  in one direction 
and then in another. 
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potential 3, 4 ,  44, 173 
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eigenvalues 112*, 125 
energy 68, 108, 112 

orthogonality and completeness 28 

angular momentum 19-20 

Compound model of particles 204 
Conservation, angular momentum 19, 21 
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Cross section, see Scattering cross section, Reaction 
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' Asterisk indicates that the subject is mentioned in a footnote. 
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Cutoff radius 4 ,  66, 203, 213, 214, 221 
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and t ime reversibility 157 
in a Coulomb potential 18 
of unstable particle 220 ff 
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False poles 59, 61, 63 ff (also see Redundant poles) 
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Fredholm's method 91. 
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relations 20 
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integral representation 81  
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Sch. Eq. in momentum representation 95 
three-dimensional Sch. Eq. 81, 86. 88, 89 
time-dependent 105 f f  
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Groups in quantum mechanics 19 f f  
Group property of Sch. E?. 12 

Hankel functions 44 
Harmonic oscillator 101 

energy levels 22, 23 
Green's function 107 
three-dimensional 31 ff 

potential 30 
Hydrogen atoms 97. 

-like levels 190 
energy levels 11 

Identical particles 31 f f  
Inelastic channel, effects near threshold 181 
Infinitesimal transformation 29 
Inhomogenity of Sch. Eq. as source or sink 71 ,  80 
Inhomogeneous Sch. Eq. I1 

lnteraction,local 196, 213 
general solution 84 

nonlocal 198 
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switched on in Lee model 195 ff 

Interference 48-49, 114, 218, 219 
between Coulomb and nuclear scattering 173 

Invariance under space inversion 209. 211. 217 
time reversal 216 
unitary transformation 24 

Inversion, space 6 

Jost functions 4' 

K-matrix 158 
Krylov-Fock theorem 127. 

Lagrange condition for differential equations 93 
Laplace's method 131 
Lasers 22, 26 
Lee model 193 ff 
Legendre polynomials 41, 118, 184 
Levinson's theorem 73 
Lifetime, continuum states, multichannel systems 167 

intermediate state 183 
quasistationary states 115. 191 
two-channel systems 169 

Liquid helium 2. 
Local interaction 196 
Long-lived states 144 (also see Quasistationary states) 
Lorentz distribution 128 
b r e n t z  group 22 

Mass renormalization. see Renormalization 
Momentum representation 94 ff, 104, 193 
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Momentum representation. Sch. Eq. 21 
transfer and analyticity 63 

theorem 55 
Moscow zero charge 193, 213 
Multichannel systems 147 ff 

cross sections, scattering and reaction 

lifetime of continuum states 161. 169 
momentum conservation 162 
phase analysis 151 
S-matrix 150 

151 ff, 164 

analytical properties 159 ff 
branching points 160 
constraints on 153 
expression for 164 ff 
poles 160 
residues of elements 161 ff 
symmetry 187 
unitarity 151 ff, 186 

scattering phases 152 
threshold anomalies 185 ff 

Muon decay 216 
scattering 192 

N / D  method 92. 
Neumann functions 65 
Neutron-proton interaction 70. 206 

Nonconservation of parity 57, 215 ff 
Non-Coulombic potential, sodium nucleus 18 
Nonlocal interaction 196, 213 
Normalization constant, convergence 198 

integral for quasistationary states 131 
of continuum wave functions 37 ff 

storage 16 

Nuclear models 22 

Observable charge, inequality for 202 

Observables in scattering theory 56 
Optical theorem 7 5  

generaIization 52 ff, 53 
Orbital momentum 1 = 0 34 ff 

1 # 0 40 ff 

mass 198 (also see Physical particle) 

plane, conservation 25 

functions 40, 50 
Orthogonality, continuum and discrete spectrum 

Ortho-hydrogen 33 
Orthonormal solutions, complete set 82 
Oscillator. degeneracy 23, 24, 25 (also see Harmonic 

oscillator) 
one-dimensional 25 
three-dimensional 22 ff 
trajectory, classical 25 

Overlap integral 125 

Para-hydrogen 33 
Parity 3. 6. 17. 25. 183, 210 

absolute 210 
nonconservation 57, 215 f f  

Parity, pions 210 
space and time 57 
when it can be determined 210 

119. 186. 187 
Particle number conservation 52. 60, 68, 111, 149, 161, 

Perturbation- theoretical series 96 
convergence 97 ff 

summation of infinite 99, 100 
accepted criterion for 91 

Perturbation theory 10, 77ff, 143 
coordinate representation 90 ff 
momentum representation 94 ff 

Perturbed equation 2 1  
Phase analysis 66, 186 

ambiguity 1 5  
Bargrnann potentials 66 
multichannel systems 151 

Physical particle 195.. 196 f f ,  201, 203, 210 
Plane wave 47 
Poisson distribution 26 
Polarization 43. 184 

Poles in a rectangular box 61 
scattered particles 215 

of S-matrlx, multichannel systems 160 
symmetry in the k-plane 59 

Potential barrier 36 ff 
exponential 64, 65 
harmonic 22 
power 29 
scattering 114. 203 
well, deep 11 
with sharp cutoff 98 

hoduction cross sections, charged panicles 176 
hopagator 104 
Reudoptent ia l  15, 16 

Quantum field theory 56, 77 

Quantization second 22 
Quasiclassical approximation I ,  116, 169. 

applicability condition 8 
Quasiparticles 193 

method of 97' 
Quasistationary states 61, 12, 13. 87. 108 f f ,  113, 

115. 117 f f ,  126, 161, 190 

nonrenorm a liza ble 91 

decay 121 ff 
general expression for s(k) 122 
lifetime 191 
normalization integral 
perturbation theory 129 f f  
probability of formation 128 
wave function, asymptotic expression 131 ff 

R-matrix 164, 166 ff ,  167 
Racah coefficients 41. 
Radiative capture 120 

wldth of gamma spectrum 120 
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Radioactive decay 108 ff, 126 (also see Decav, Alpha Scattering amplitude, phase 180 , -  
decay, Beta hecay) 

exponential 127, 128 
Radium 140 
Rayleigh -Schroedinger perturbatlon theory 90. 
Reactions 135 f f ,  147 ff 

cross sections 170 

two- and three-particle 131 
a t  low energies 114 ff 

Recom bina tion pro ba bility 19 1 
Rectangular well, discrete level 9 
Redundant poles 59, 11, 1 3  (also see False poles) 
Reflection coefficient 36 

of neutrons by graphite 16 
Refractive index 15. 16 
Regularization of integrals 130 
Renormalizable theory 203 
Renormalization as a means to accomplish convergence 

214 
and cutoff radius 200 
mass and charge 194, 198, 199, 200, 201, 202, 

206, 208, 213, 214 
Representations of groups 21, 22, 25 
Residues, S-matrix elements. multichannel 

systems 161 ff 
scattering matrix elements 61 ff  

energy 117, 119 

level 13 
physical interpretation 190 
scattering 114, 108 

width 114, 128 

Resonance 108, 191 

scattering cross section 191 

cross section near threshold 190 

Riemann surface 114 
Rotation group 20 
Runge-Lenz vector 19 

S-matrix 161 
analytical properties 56 ff 

branching points 160 
multichannel systems 150 

multichannel systems 159 ff 

branching points 160 
constraints on 153 
poles 160 
analytical properties 159 ff 
expression for 164 f f  
residues 161 
unitarity 151 ff 

and t ime reversal 151, 186 
symmetry 153 ff.  158 

and time reversal 186 
unitary 186 

Scalar interaction 198, 199 ff, 215 
k a t t e r e d  particles 11, 12 
Scattering 1, 41, 98 ff. 126, 141 f f .  202, 205 

amplitude48, 53, 112, 199, 214 
nonphysical pole 204 

residue 203 
Cross section 48. 53 

at  low energies 170 ff 
differential 180, 214 
in classical and quantum mechanics 48 
multichannel systems 151 f f ,  164 
near reaction threshold 118 ff 

energy curves 118 
multichannel case 190 

neutral particles 41 ff 
length 13, IO 
nuclear 172, 113 
phases 61, 70, 15,  114 

multichannel systems 152 
phase analysis 12 

pions by deuton 14. 
polarization of particles 215 
potential 34, 35 
power of a potential 35, 45, 46 
resonances 13, 108, 140. 191 
scalar interaction 199 
vector interaction 213 ff 
wave functions 44, 111 

Sch. Eq., coordinate representation 95 
group invariance 1, 24 

property 12 
inhomogeneous I1 

general solution 84 
invariance property 51, 59 

under rotations or b r e n t z  transfor- 
mation 17'. 21. 85 

lowering the order of 12 
momentum representation 21. 95 
solution for diatomic molecule 32 

classical region 8 
in a well 11 
nonclassical region 8 

Second quantization 22 
Separation of variables I*. 11.. 20 

Shell model of the nucleus 22 
Short-range interactions 44 

and degeneracy 1 

potential 3, 4 
poles 61' 

a-electrons 19 
Sign inversion transformation 32 
Singular potential 4'. 11, 12. 13, 69. 204, 206 

infinite number of wells 13 ff 
Sodium nucleus 18 
Source function 78, 106 

(sink) 85 
Space parity, nonconservation 194 (also see Parity) 
Spherical functions 3, 41. 41. 49. 212 

completeness property 84 
four-dimensional 21. 86 
n-dimensional 22 

Spin precession in  scattering 222-224 
Spherical symmetry 6 
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Spherically symmetric potential 2,  11,  18.. 25 
Standing-wave representation 158. 159 
Stark effect 17 
Stationary state as limit of quasistationary state 

Statistics 31 ff 
Strange particles 178, 185, 191 
Strong interactions 57 
SU (3) 25 
Superconductivity P, 102 
Symmetry group of strongly interacting particles 25. 

119, 139ff 

number 33 
properties of scattering phases 61 
S-matrix 153 ff 

multichannel systems 181 

T-invariance 216 ff 
Time reversal 153 ff 

for charged particles in magnetic field 155 
particles with spin 155 

reversibility, breakdown of 157 
in classical mechanics 153-154 

Timing mechanism in atomic phenomena 142, 

Transmission coefficient 111 

Threshold anomalies 181 

167, 199 

through a potential barrier 36  f f ,  110' 

creation of charged particles 187 
essential singularity 181 
for particles with spin 182 
in multichannel systems 185 ff 
information recovered from 183 

effects 170 ff 
state 144, 146 

Uncertainty principle 8. 30. 110 
relation 26 

Unitarity 52, 92*, 153 

Unitary group 24 

Unphysical sheet of complex E plane 114 
Unstable intermediate particle 204 ff 

Uranium 111 

of S-matrix, multichannel systems 151 f f ,  186 

transformation 24 

particles, creation 134 ff 

l /v  law 175 
Variational principle 29, 202 
Vector interaction 198, 208 ff, 215 

scattering 213 ff 
Virial theorem 29 f f  

generalization 30 
Virtual decay 218 

electrons 216 
level 13, 144, 146 
particles 197. 199 
s t a t a  72, 72 

Wave function, boundary conditions 2, 3. 4, 11, 13. 
34. 78, 148, 171 

complete orthonormal system 49 
1 = 0 34 ff 
1 # 0 40 ff 

non-normalizable 113 
normalization 3 1  fT. 131 
single-valuedness 2 (also see Boundary 

explicit expressions 42-43 

conditions) 
Weak interactions 51 
Whittaker's functions 85 
WKB approximation 7. 

Yukawa potential 208 

Zero charge 193. 213 
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